25 research outputs found

    Plasmodium falciparum transcription in different clinical presentations of malaria associates with circulation time of infected erythrocytes

    Get PDF
    Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum’s tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced dhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity

    Table_2_Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali.pdf

    No full text
    A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014–2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013–15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0–1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.</p

    Table_3_Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali.pdf

    No full text
    A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014–2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013–15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0–1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.</p

    Image_1_Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali.pdf

    No full text
    A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014–2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013–15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0–1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.</p

    Table_1_Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali.pdf

    No full text
    A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014–2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013–15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0–1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.</p

    Image_2_Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali.pdf

    No full text
    A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014–2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013–15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0–1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.</p

    A cross-sectional study of the filarial and Leishmania co-endemicity in two ecologically distinct settings in Mali

    No full text
    Abstract Background Filariasis and leishmaniasis are two neglected tropical diseases in Mali. Due to distribution and associated clinical features, both diseases are of concern to public health. The goal of this study was to determine the prevalence of co-infection with filarial (Wuchereria bancrofti and Mansonella perstans) and Leishmania major parasites in two ecologically distinct areas of Mali, the Kolokani district (villages of Tieneguebougou and Bougoudiana) in North Sudan Savanna area, and the district of Kolondieba (village of Boundioba) in the South Sudan Savanna area. Methods The prevalence of co-infection (filarial and Leishmania) was measured based on (i) Mansonella perstans microfilaremia count and/or filariasis immunochromatographic test (ICT) for Wuchereria bancrofti-specific circulating antigen, and (ii) the prevalence of delayed type hypersensitivity (DTH) responses to Leishmania measured by leishmanin skin test (LST). Results In this study, a total of 930 volunteers between the age of 18 and 65 were included from the two endemic areas of Kolokani and Kolondieba. In general, in both areas, filarial infection was more prevalent than Leishmania infection with an overall prevalence of 15.27% (142/930) including 8.7% (81/930) for Mansonella perstans and 8% (74/930) for Wuchereria bancrofti-specific circulating antigen. The prevalence of Leishmania major infection was 7.7% (72/930) and was significantly higher in Tieneguebougou and Bougoudiana (15.05%; 64/425) than in Boundioba (2.04%; 8/505) (χ2 = 58.66, P < 0.0001). Among the filarial infected population, nearly 10% (14/142) were also positive for Leishmania with an overall prevalence of co-infection of 1.50% (14/930) varying from 2.82% (12/425) in Tieneguebougou and Bougoudiana to 0.39% (2/505) in Boundioba (P = 0.0048). Conclusion This study established the existence of co-endemicity of filarial and Leishmania infections in specific regions of Mali. Since both filarial and Leishmania infections are vector-borne with mosquitoes and sand flies as respective vectors, an integrated vector control approach should be considered in co-endemic areas. The effect of potential interaction between filarial and Leishmania parasites on the disease outcomes may be further studied

    Additional file 1: of Impact of insecticide-treated bednets and indoor residual spraying in controlling populations of Phlebotomus duboscqi, the vector of Leishmania major in Central Mali

    No full text
    Table S1. Number of collected sand flies per household per month before and after IRS in the study area. Before IRS/LLINs, the number of collected flies per household ranged from 205 to 649 with a median of 293.00 and variance of 19778.94. After IRS/LLINs, the number of collected flies per household ranged from 25 to 159 with a median of 59.00 and variance of 3123.29. (DOCX 16 kb
    corecore