15 research outputs found

    Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway

    Get PDF
    The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)–programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte–associated antigen 4 pathway. Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1–PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1–PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1–PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues

    Defective Autoimmune Regulator-Dependent Central Tolerance to Myelin Protein Zero Is Linked to Autoimmune Peripheral Neuropathy

    Get PDF
    Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-Îł in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves

    Impairment of NK cell function by NKG2D modulation in NOD mice

    Get PDF
    Nonobese diabetic (NOD) mice, a model of insulin-dependent diabetes mellitus, have a defect in natural killer (NK) cell-mediated functions. Here we show impairment in an activating receptor, NKG2D, in NOD NK cells. While resting NK cells from C57BL/6 and NOD mice expressed equivalent levels of NKG2D, upon activation NOD NK cells but not C57BL/6 NK cells expressed NKG2D ligands, which resulted in downmodulation of the receptor. NKG2D-dependent cytotoxicity and cytokine production were decreased because of receptor modulation, accounting for the dysfunction. Modulation of NKG2D was mostly dependent on the YxxM motif of DAP10, the NKG2B-associated adaptor that activates phosphoinositide 3 kinase. These results suggest that NK cells may be desensitized by exposure to NKG2D ligands

    Distinct Roles of Dendritic Cells and B Cells in Va14Ja18 Natural T Cell Activation In Vivo

    No full text
    Va14Ja18 natural T (iNKT) cells are innate, immunoregulatory lymphocytes that recognize CD1d-restricted lipid Ags such as α-galactosylceramide (αGalCer). The immunoregulatory functions of iNKT cells are dependent upon either IFN-γ or IL-4 production by these cells. We hypothesized that αGalCer presentation by different CD1d-positive cell types elicits distinct iNKT cell functions. In this study we report that dendritic cells (DC) play a critical role in αGalCer-mediated activation of iNKT cells and subsequent transactivation of NK cells. Remarkably, B lymphocytes suppress DC-mediated iNKT and NK cell activation. Nevertheless, αGalCer presentation by B cells elicits low IL-4 responses from iNKT cells. This finding is particularly interesting because we demonstrate that NOD DC are defective in eliciting iNKT cell function, but their B cells preferentially activate this T cell subset to secrete low levels of IL-4. Thus, the differential immune outcome based on the type of APC that displays glycolipid Ags in vivo has implications for the design of therapies that harness the immunoregulatory functions of iNKT cells
    corecore