6 research outputs found

    An intensive care unit outbreak with multi-drug-resistant Pseudomonas aeruginosa – spotlight on sinks

    Full text link
    Background: Pseudomonas aeruginosa and other Gram-negative bacteria have the ability to persist in moist environments in healthcare settings, but their spread from these areas can result in outbreaks of healthcare-associated infections. Methods: This study reports the investigation and containment of a multi-drug-resistant P. aeruginosa outbreak in three intensive care units of a Swiss university hospital. In total, 255 patients and 276 environmental samples were screened for the multi-drug-resistant P. aeruginosa outbreak strain. The environmental sampling and molecular characterization of patient and environmental strains, and control strategies implemented, including waterless patient care, are described. Results: Between March and November 2019, the outbreak affected 29 patients. Environmental sampling detected the outbreak strain in nine samples of sink siphons of three different intensive care units with a common water sewage system, and on one gastroscope. Three weeks after replacement of the sink siphons, the outbreak strain re-grew in siphon-derived samples and newly affected patients were identified. The outbreak ceased after removal of all sinks in the proximity of patients and in medication preparation areas, and minimization of tap water use. Multi-locus sequence typing indicated clonality (sequence type 316) in 28/29 patient isolates and all 10 environmental samples. Conclusions: Sink removal combined with the introduction of waterless patient care terminated the multi-drug-resistant P. aeruginosa outbreak. Sinks in intensive care units may pose a risk for point source outbreaks with P. aeruginosa and other bacteria persisting in moist environments. Keywords: Intensive care; Multi-drug resistance; Outbreak; Pseudomonas aeruginosa; Sink; Siphon; Waterless patient care

    Fourier-transform infrared spectroscopy for typing of vancomycin-resistant Enterococcus faecium: performance analysis and outbreak investigation.

    Get PDF
    Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are causing nosocomial infections and outbreaks. Bacterial typing methods are used to assist in outbreak investigations. Most of them, especially genotypic methods like multi-locus sequence typing (MLST), whole genome sequencing (WGS), or pulsed-field gel electrophoresis, are quite expensive and time-consuming. Fourier-transform infrared (FT-IR) spectroscopy assesses the biochemical composition of bacteria, such as carboxyl groups in polysaccharides. It is an affordable technique and has a faster turnaround time. Thus, the aim of this study was to evaluate FT-IR spectroscopy for VREfm outbreak investigations. Basic performance requirements like reproducibility and the effects of incubation time were assessed in distinct sample sets. After determining a FT-IR spectroscopy cut-off range, the clustering agreement between FT-IR and WGS within a retrospective (n: 92 isolates) and a prospective outbreak (n: 15 isolates) was investigated. For WGS an average nucleotide identity (ANI) cut-off score of 0.999 was used. Basic performance analysis showed reproducible results. Moreover, FT-IR spectroscopy readouts showed a high agreement with WGS-ANI analysis in clinical outbreak investigations (V-measure 0.772 for the retrospective and 1.000 for the prospective outbreak). FT-IR spectroscopy had a higher discriminatory power than MLST in the outbreak investigations. After determining cut-off values to achieve optimal resolution, FT-IR spectroscopy is a promising technique to assist in outbreak investigation as an affordable, easy-to-use tool with a turnaround time of less than one day. IMPORTANCE Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are a frequent cause of nosocomial outbreaks. Several bacterial typing methods are used to track transmissions and investigate outbreaks, whereby genome-based techniques are used as a gold standard. Current methods are either expensive, time-consuming, or both. Additionally, often, specifically trained staff needs to be available. This study provides insight into the use of Fourier-transform infrared (FT-IR) spectroscopy, an affordable, easy-to-use tool with a short turnaround time as a typing method for VREfm. By assessing clinical samples, this work demonstrates promising results for species discrimination and reproducibility. FT-IR spectrosopy shows a high level of agreement in the analysis of VREfm outbreaks in comparison with whole genome sequencing-based methods

    PI(4,5)P-2 forms dynamic cortical structures and directs actin distribution as well as polarity in Caenorhabditis elegans embryos

    No full text
    Asymmetric division is crucial for embryonic development and stem cell lineages. In the one-cell C. elegans embryo, a contractile cortical actomyosin network contributes to asymmetric division by segregating PAR proteins to discrete cortical domains. Here, we discovered that the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) localizes to polarized dynamic structures in C. elegans zygotes, distributing in a PAR-dependent manner along the anterior-posterior (A-P) embryonic axis. PIP2 cortical structures overlap with F-actin, and coincide with the actin regulators RHO-1, CDC-42 as well as ECT-2. Particle image velocimetry analysis revealed that PIP2 and F-actin cortical movements are coupled, with PIP2 structures moving slightly ahead. Importantly, we established that PIP2 cortical structure formation and movement is actin-dependent. Conversely, we found that decreasing or increasing the level of PIP2 results in severe F-actin disorganization, revealing interdependence between these components. Furthermore, we uncovered that PIP2 and F-actin regulate the sizing of PAR cortical domains, including during the maintenance phase of polarization. Overall, our work establishes that a lipid membrane component, PIP2, modulates actin organization and cell polarity in C. elegans embryos.</jats:p

    In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance

    No full text
    Treatment failure in biofilm-associated bacterial infections is an important healthcare issue. In vitro studies and mouse models suggest that bacteria enter a slow-growing/non-growing state that results in transient tolerance to antibiotics in the absence of a specific resistance mechanism. However, little clinical confirmation of antibiotic tolerant bacteria in patients exists. In this study we investigate a Staphylococcus epidermidis pacemaker-associated endocarditis, in a patient who developed a break-through bacteremia despite taking antibiotics to which the S. epidermidis isolate is fully susceptible in vitro. Characterization of the clinical S. epidermidis isolates reveals in-host evolution over the 16-week infection period, resulting in increased antibiotic tolerance of the entire population due to a prolonged lag time until growth resumption and a reduced growth rate. Furthermore, we observe adaptation towards an increased biofilm formation capacity and genetic diversification of the S. epidermidis isolates within the patient

    In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance

    Get PDF
    Treatment failure in biofilm-associated bacterial infections is an important healthcare issue. In vitro studies and mouse models suggest that bacteria enter a slow-growing/non-growing state that results in transient tolerance to antibiotics in the absence of a specific resistance mechanism. However, little clinical confirmation of antibiotic tolerant bacteria in patients exists. In this study we investigate a Staphylococcus epidermidis pacemaker-associated endocarditis, in a patient who developed a break-through bacteremia despite taking antibiotics to which the S. epidermidis isolate is fully susceptible in vitro. Characterization of the clinical S. epidermidis isolates reveals in-host evolution over the 16-week infection period, resulting in increased antibiotic tolerance of the entire population due to a prolonged lag time until growth resumption and a reduced growth rate. Furthermore, we observe adaptation towards an increased biofilm formation capacity and genetic diversification of the S. epidermidis isolates within the patient

    Group A Streptococcus strains causing meningitis without distinct invasive phenotype

    No full text
    Abstract Group A streptococcal (GAS; aka Streptococcus pyogenes) meningitis is a fulminant disease associated with high morbidity and mortality. To elucidate the mechanisms underlying the invasiveness of GAS in meningitis, we compared GAS isolates derived from five cases of meningitis to otitis and colonizing isolates. We did not observe differences in adherence to and invasion of human brain microvascular endothelial cells, virulence factors activity, or barrier disruption. Whole genome sequencing did not reveal particular invasiveness traits. Most patients previously suffered from otitis media suggesting that meningitis likely resulted from a continuous spread of the infection rather than being attributable to changes in the pathogen's virulence
    corecore