63 research outputs found

    Turbidity diagrams of polyanion/polycation complexes in solution as a potential tool to predict the occurrence of polyelectrolyte multilayer deposition.

    Get PDF
    Surface functionalization with polyelectrolyte multilayer films (PEM films) has become very popular owing to its simplicity and versatility. However, even if some research is already available, this field of surface chemistry lacks a systematic knowledge of how the polyelectrolyte structure and solution conditions influence the growth of PEM films. In this investigation, we focus on the possible relationship between turbidity of polycation and polyanion mixtures in solution, and the buildup of PEM films made from the same polyelectrolytes in the same physicochemical conditions, namely pH, temperature and ionic strength. It comes out that for six different polycation/polyanion combinations there is a clear correlation between the turbidity evolution of polycation/polyanion complexes with the salt concentration and the evolution of the film deposition with the same parameter. In this investigation, the complexes in solution were prepared in conditions where the ratio between the number of cationic to anionic groups was close to unity. Even if there is a correlation between turbidity in solution and PEM film deposition, we found some exceptions in the low salt concentration regime. This work is an extension of the preliminary works of Cohen Stuart (D. Kovačević et al. Langmuir 18 (2002) 5607-5612) and Sukishvili et al. (S.A. Sukhishvili, E. Kharlampieva and V. Izumrudov, Macromolecules 39 (2006) 8873-8881).journal articleresearch support, non-u.s. gov't2010 Jun 012010 02 21importe

    Tunable synthesis of Prussian Blue in exponentially growing polyelectrolyte multilayer films.

    Get PDF
    Polyelectrolyte multilayer (PEM) films have become very popular for surface functionalization and the design of functional architectures such as hollow polyelectrolyte capsules. It is known that properties such as permeability to small ionic solutes are strongly dependent on the buildup regime of the PEM films. This permeability can be modified by tuning the ionization degree of the polycations or polyanions, provided the film is made from weak polyelectrolytes. In most previous investigations, this was achieved by playing on the solution pH either during the film buildup or by a postbuildup pH modification. Herein we investigate the functionalization of poly(allylamine hydrochloride)/poly(glutamic acid) (PAH/PGA) multilayers by ferrocyanide and Prussian Blue (PB). We demonstrate that dynamic exchange processes between the film and polyelectrolyte solutions containing one of the component polyelectrolyte allow one to modify its Donnan potential and, as a consequence, the amount of ferrocyanide anions able to be retained in the PAH/PGA film. This ability of the film to be a tunable reservoir of ferrocyanide anions is then used to produce a composite film containing PB particles obtained by a single precipitation reaction with a solution containing Fe(3+) cations in contact with the film. The presence of PB in the PEM films then provides magnetic as well as electrochemical properties to the whole architecture.journal article2009 Dec 15importe

    Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe.

    Get PDF
    Quartz crystal microbalance and cyclic voltammetry are used to investigate the influence of the supporting salt of polyelectrolyte solutions on the buildup and the structure of PSS/PAH polyelectrolyte multilayers (PSS: poly(4-styrene sulfonate); PAH: poly(allylamine hydrochloride)). This film constitutes a model polyelectrolyte multilayer system. The supporting electrolytes were sodium salts where the nature of the anion was changed by following the Hofmeister series from cosmotropic to chaotropic anions (F-, Cl-, NO3-, ClO4-). For all the investigated anions, the film thickness increases linearly with the number of deposition steps.Wefind that chaotropic anions lead to larger thickness increments per bilayer during the film buildup than cosmotropic ones, confirming results found on PSS/PDADMA multilayers (PDADMA:poly(diallyldimethylammonium)). Films constituted by more than nine PSS/PAH bilayers are still permeable to hexacyanoferrate(II) ions, Fe(CN)(6)4-, whatever the nature of the supporting salt anion. On the other hand, these films are impermeable to ruthenium(II) hexamine ions, Ru(NH3)(6)2+, after the third PAH layer in the presence of NaF, NaCl, or NaNO3. These results are explained by the presence of an excess of positive charges in the film, which leads to a positive Donnan potential. We find that this potential is more positive when more chaotropic anions are used during the film buildup. We also find that a film constructed in the presence of chaotropic anions swells and becomes more permeable to Fe(CN)(6)4- ions when the film is brought into contact with a solution containing more cosmotropic anions. All our experimental findings can be explained by a strong interaction between chaotropic anions with the NH3+groups of PAH that is equivalent, as far as the multilayer buildup and electrochemical response is concerned, to a deprotonation of PAH as it is observed when the film is constructed at a higher pH. We thus arrive to a coherent explanation of the effect of the nature of the anions of the supporting electrolyte on the polyelectrolyte multilayer. We also find that great care must be taken when investigating polyelectrolyte multilayer films by electrochemical probing because electrochemical reactions involving the probes can appreciably modify the multilayer structure.journal articleresearch support, non-u.s. gov't2009 Feb 17importe

    Secondary structure of rhBMP-2 in a protective biopolymeric carrier material

    Get PDF
    Efficient delivery of growth factors is one of the great challenges of tissue engineering. Polyelectrolyte multilayer films (PEM) made of biopolymers have recently emerged as an interesting carrier for delivering recombinant human bone morphogenetic protein 2 (rhBMP-2 noted here BMP-2) to cells in a matrix-bound manner. We recently showed that PEM made of poly(l-lysine) and hyaluronan (PLL/HA) can retain high and tunable quantities of BMP-2 and can deliver it to cells to induce their differentiation in osteoblasts. Here, we investigate quantitatively by Fourier transform infrared spectroscopy (FTIR) the secondary structure of BMP-2 in solution as well as trapped in a biopolymeric thin film. We reveal that the major structural elements of BMP-2 in solution are intramolecular β-sheets and unordered structures as well as α-helices. Furthermore, we studied the secondary structure of rhBMP-2 trapped in hydrated films and in dry films since drying is an important step for future applications of these bioactive films onto orthopedic biomaterials. We demonstrate that the structural elements were preserved when BMP-2 was trapped in the biopolymeric film in hydrated conditions and, to a lesser extent, in dry state. Importantly, its bioactivity was maintained after drying of the film. Our results appear highly promising for future applications of these films as coatings of biomedical materials, to deliver bioactive proteins while preserving their bioactivity upon storage in dry state.This work was supported by the French Ministry of Research through an ANR-EmergenceBIO grant (ANR-09-EBIO-012-01), by the European Commission (FP7 program) via a European Research Council starting grant (BIOMIM, GA 259370), and by GRAVIT (081012_FIBIOS). C.P. is grafetul to IUF for financial support

    Small Bioactivated Magnetic Quantum Dot Micelles

    No full text
    International audienc

    Soft-Mechanochemistry: Mechanochemistry Inspired by Nature

    Get PDF
    International audienceCells and bacteria use mechanotransduction processes to transform a mechanical force into a chemical/biochemical response. The area of chemistry where chemical reactions are induced by mechanical forces is called mechanochemistry. Over the last few years, chemists developed force-induced reactions affecting covalent bonds in molecules under tension which requires high energy input and/or high intensity forces. In contrast, in nature, mechanotransduction processes take place with forces of much weaker intensity and much less demanding energy. They are mainly based on protein conformational changes or changes in supramacromolecular architectures. Mechanochemistry based on such low-energy-demanding processes and which does not affect chemical bonds can be called soft-mechanochemistry. In this feature article, we first discuss some examples of soft-mechanochemistry processes encountered in nature, in particular, cryptic sites, allowing us to define more precisely the concepts underlying soft-mechanochemistry. A series of examples, developed over the past few years, of chemomechanoresponsive systems based on soft-mechanochemistry principles are given. We describe, in particular, cryptic site surfaces, enzymatically active films whose activity can be modulated by stretching and films where stretching induces changes in their fluorescence properties. Finally, we give our view of the future of soft-mechanochemistry

    Water-soluble pegylated quantum dots: from a composite hexagonal phase to isolated micelles

    Get PDF
    International audienceWe present a simple method based on the dispersion of fluorescent quantum dots (QD) into a liquid crystal phase that provides either nanostructured material or isolated QD micelles depending on water concentration. The liquid-crystal phase was obtained by using a gallate amphiphile with a poly(ethylene glycol) chain as the polar headgroup, named I. The hydration of QD/I mixtures resulted in the formation of a composite hexagonal phase identified by small-angle X-ray scattering and by polarized light and fluorescence optical microscopy, showing a homogeneous distribution of fluorescence within hexagonal phase. This composite mesophase can be converted into isolated QD-I micelles by dilution in water. The fluorescent QD-I micelles, purified by size exclusion chromatography, are well monodisperse with a hydrodynamic diameter of 20-30 nm. Moreover, these QD do not show any nonspecific adsorption on lipid or cell membranes. By simply adjusting the water content, the PEG gallate amphiphile I provides a simple method to prepare a self-organized composite phase or pegylated water soluble QD micelles for biological applications
    • …
    corecore