46 research outputs found

    Spiral inflow feeding the nuclear starburst in M83, observed in H-alpha emission with the GHAFAS Fabry-Perot interferometer

    Full text link
    We present observations of the nearby barred starburst galaxy, M83 (NGC5236), with the new Fabry-Perot interferometer GHAFAS mounted on the 4.2 meter William Herschel Telescope on La Palma. The unprecedented high resolution observations, of 16 pc/FWHM, of the H-alpha-emitting gas cover the central two kpc of the galaxy. The velocity field displays the dominant disk rotation with signatures of gas inflow from kpc scales down to the nuclear regions. At the inner Inner Lindblad Resonance radius of the main bar and centerd at the dynamical center of the main galaxy disk, a nuclear 5.5(±0.9)×108M⊙5.5 (\pm 0.9) \times 10^8 M_\odot rapidly rotating disk with scale length of 60±2060 \pm 20 pc has formed. The nuclear starburst is found in the vicinity as well as inside this nuclear disk, and our observations confirm that gas spirals in from the outer parts to feed the nuclear starburst, giving rise to several star formation events at different epochs, within the central 100 pc radius of M83.Comment: Accepted for publication in ApJ Letters. High-resolution version can be found at http://www.astro.su.se/~kambiz/DOC/paper-M83.pd

    Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-gamma as a Key Player of the Enhanced Innate Immune Response in Lungs

    Get PDF
    Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-gamma) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-gamma.IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-gamma gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases

    Macrophage-B Cell Interactions in the Inverted Porcine Lymph Node and Their Response to Porcine Reproductive and Respiratory Syndrome Virus

    Get PDF
    Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΊ to their murine counterparts: subcapsular sinus MΊ, medullary cord MΊ and medullary sinus MΊ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΊ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΊ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΊ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning

    Separated children seeking asylum in Ireland.

    Get PDF
    This report updates the first report of the Irish Refugee Council published in 1999, entitled Separated children seeking asylum in Ireland: A report on legal and social conditions. At the time of the publication of that report, there were 32 separated children seeking asylum in Ireland. The number of separated children seeking asylum in Ireland has increased markedly. By March 2003, the number of separated children, entering Ireland and referred to the North Eastern Area Health Board was 2,7172. Nearly half, or 1,113 children, were reunited with family members already in Ireland. 1,316 separated children, under the care of the Health Boards, have made applications for asylum under the 1951 Geneva Convention on the Status of Refugees. Neither the Government nor non-statutory agencies anticipated this increase in the numbers of separated minors arriving in Ireland. Therefore administrative procedures and care services have had to be responsive to emergent needs rather than having developed through advance planning. This report aims to examine policy and practice with respect to the legal and social conditions of separated children in Ireland, in light of the Separated Children in Europe Programme’s (SCEP)3 ‘Statement of Good Practice’ (SGP). The Irish Refugee Council, a member of the Separated Children in Europe Programme, commissioned the report

    Les sondes embarquées, un outil de traçabilité et de fiabilité des autoclaves

    No full text
    Poster - Session : Traçabilité et fiabilité des équipements spécifiquesNational audienc

    CIMAC. Chirurgie - Imagerie médicale - Anesthésie en Confinement

    No full text
    Présentation du poster en 180 sec de l'activité des équipes expérimentation / élevage de la PFIENational audienc

    Recent Photon Counting Developments at the Observatoire de Marseille

    No full text
    International audienceWe present a new generation photon counting system based on a full software centering system developed at the Observatoire de Marseille. Since the photon counting systems were developed, several improvements have been made on the camera head, whereas centering systems have evolved somewhat slower. The major improvement made on the presented photon counting system is the use of a fast software algorithm for running on a standard PC computer. This system exhibits outstanding photon counting capacity compared to previous hard-wired or DSP-based centering systems, as well as a remarkable cost / performance ratio
    corecore