16 research outputs found

    A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure

    Get PDF
    In the domain of implantable materials, the porosity and pore size distribution of a material in contact with bone is decisive for bone ingrowth and thus the control of the porosity is of great interest. The use of a new porogen agent, i.e. sucrose is proposed to create a porosity in biphasic calcium phosphate blocks. The technological procedure is as follows: sucrose and mineral powder are mixed, then compressed by isostatic compression and sintering finally eliminates sucrose. Blocks obtained were compared to a manufactured product: Triosite® (Zimmer, Etupes, France) which porosity is created through a naphthalene sublimation process.Results have shown that the incorporation of sucrose allows the preparation of porous blocks with controlled porosity varying from 40 to 80% and with macro-, meso- and microporosity characteristics depending on the percentage of sucrose added as well as on the granulometry of both sucrose and mineral powder

    The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses.

    Get PDF
    Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios

    Gallium as a potential candidate for treatment of osteoporosis

    No full text
    International audienceGallium (Ga) is a semi-metallic element that displays antitumor, antiresorptive, anti-inflammatory and immunosuppressive properties. Among all these properties, antitumor properties were the most extensively applied and have shown efficacy in treatment of Paget's disease, myeloma and hypercalcemia in cases of malignancy. By contrast, no clinical trials have been conducted in prevention and/or treatment of osteoporosis. In this article I focus on Ga effects on bone tissue and cells, as well as on molecular mechanisms governing Ga internalization into cells. Eventually, the potential of Ga as an antiosteoporotic agent is discussed

    Prediction and optimization of bone density around orthopedic implants delivering bisphosphonate

    No full text
    The fixation of an orthopedic implant depends strongly upon its initial stability. Peri-implant bone may resorb shortly after the surgery. This resorption is directly followed by new bone formation and implants fixation strengthening, the so-called secondary fixation. If the initial stability is not reached, the resorption continues and the implant fixation weakens, which leads to implant loosening. Studies with rats and dogs have shown that a solution to prevent peri-implant resorption is to deliver bisphosphonate from the implant surface

    Orthopedic implant used as drug delivery system: clinical situation and state of the research.

    No full text
    A partial review is proposed on the existing literature for the research performed in orthopedic implant used as drug delivery system. In the first part, an evaluation is given on the clinical need to deliver a drug in the surrounding of an implant. Secondly, a review of the clinical situation is developed for implants already used as drug delivery system. Experimental works performed for local delivery are reported. In particular, a description is given on the in vitro and in vivo studies where the implant is coated with different proteins or drugs. Finally, a conclusion is proposed on the next step in the development of orthopedic implant as drug delivery system mentioning also the industrial situation
    corecore