9 research outputs found

    Negotiation on the assessment of research articles with academic reviewers:Application of Peer-review approach of teaching

    No full text
    This study provides an insight into the dominant negotiation processes that occur between the authors of research articles and academic reviewers at the peer reviewing stage. Data of reviewers comments and authors responses on 32 science and engineering based journal articles covering four decision categories (accept as is, accept with minor revisions, major revisions and reject) were collected. A commonly practised peer-review approach in teaching was applied to analyse the data and to identify the key negotiation attributes, their frequency of occurrence, authors’ reaction and approach to negotiate with the reviewers. Six main negotiation attributes were identified. Technical quality was the most frequent (31% of all instances) attracting mixed reactions from the authors. The remaining attributes constituted suggestion (20%), explanation (20%), restatement (15%), grammar (13%) and structure (~1%). With the exception of ‘explanation’ where authors had to counteract to clear misunderstood concepts or contents by the reviewers, the other attributes were of highly collaborative nature and were willingly accepted by the authors. All these negotiations were found to help authors in improving the overall quality, clarity and readability of their manuscripts, besides forcing them to rethink about unclear contents. The negotiation trends emerged here can help the academic researchers to improve the quality of their articles before submission to the peer-reviewed journals. It can also provide a link through which their classroom teaching experience involving supervision of peer review negotiations among students can be utilised in writing their research articles and negotiating with academic reviewers

    Causes and Consequences of Metallic Bridge Failures

    No full text

    Factors influencing the design life of old steel bridges

    Get PDF
    When deciding about the specific design life for bridge structures, care should be taken to ensure that the structure fulfils all the fundamental requirements of structural reliability in terms of robustness, safety and serviceability in order to achieve the service life of the bridge. Load and material properties, cross-section and system geometry are the basic variables or parameters that are being used when considering the design life of bridge structures. The design life of bridge structures as specified in the Eurocodes and British Standards is 100 and 120 years respectively while in AASHTO-LRFD it is for 75 years. However, in all these codes of practice, there are no specifications or provision or guidelines related to sustaining the service life of bridge structures (Bartholomew, 2007 & 2009). This is because the service life depends on the durability of the structure which is heavily influenced by several factors such as fatigue, corrosion and changes in superimposed loads. Therefore, with an increase in traffic loading together with climate changes, the demand to ensure service life is very acute because of the importance of bridge structures in the infrastructure network, which is especially true for long span bridges. Also, with different load applications of heavy good vehicles (HGVs) occurring during the design life, this will affect the structural integrity of old steel bridges. For example, old bridges in many countries including Malaysia were designed using British Standard compliances. Since the Eurocodes have been widely practising nowadays, the estimation of loading applied might be different with the old code of practice. Plus, with the traffic increasing every year without any control, the maintenance for the old bridges especially should be more frequent as these bridges may not have benefited to the remedial measures to improve the fatigue performances. Therefore, the actual service life may not reach the expected service life as the actual service life depends on the exposure condition of the structure, quality of materials, design and construction and also the level of maintenance performance. In addition, with the increase in traffic load and frequency, this could seriously jeopardise the integrity of old bridges to meet their actual service life. This paper discusses the issue concerning the design and remaining service life estimation used when designing and appraising steel bridges
    corecore