2,132 research outputs found

    Spitzer Infrared Spectrograph Detection of Molecular Hydrogen Rotational Emission towards Translucent Clouds

    Get PDF
    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0-0) transitions of molecular hydrogen (H_2) toward six positions in two translucent high Galactic latitude clouds, DCld 300.2–16.9 and LDN 1780. The detection of these lines raises important questions regarding the physical conditions inside low-extinction clouds that are far from ultraviolet radiation sources. The ratio between the S(2) flux and the flux from polycyclic aromatic hydrocarbons (PAHs) at 7.9 μm averages 0.007 for these six positions. This is a factor of about four higher than the same ratio measured toward the central regions of non-active Galaxies in the Spitzer Infrared Nearby Galaxies Survey. Thus, the environment of these translucent clouds is more efficient at producing rotationally excited H_2 per PAH-exciting photon than the disks of entire galaxies. Excitation analysis finds that the S(1) and S(2) emitting regions are warm (T ≳ 300 K), but comprise no more than 2% of the gas mass. We find that UV photons cannot be the sole source of excitation in these regions and suggest mechanical heating via shocks or turbulent dissipation as the dominant cause of the emission. The clouds are located on the outskirts of the Scorpius-Centaurus OB association and may be dissipating recent bursts of mechanical energy input from supernova explosions. We suggest that pockets of warm gas in diffuse or translucent clouds, integrated over the disks of galaxies, may represent a major source of all non-active galaxy H_2 emission

    Compactifications of conformal gravity

    Full text link
    We study conformal theories of gravity, i.e. those whose action is invariant under the local transformation g_{\mu\nu} -> \omega^2 (x) g_{\mu\nu}. As is well known, in order to obtain Einstein gravity in 4D it is necessary to introduce a scalar compensator with a VEV that spontaneously breaks the conformal invariance and generates the Planck mass. We show that the compactification of extra dimensions in a higher dimensional conformal theory of gravity also yields Einstein gravity in lower dimensions, without the need to introduce the scalar compensator. It is the field associated with the size of the extra dimensions (the radion) who takes the role of the scalar compensator in 4D. The radion has in this case no physical excitations since they are gauged away in the Einstein frame for the metric. In these models the stabilization of the size of the extra dimensions is therefore automatic.Comment: 13 page

    Aromatic emission from the ionised mane of the Horsehead nebula

    Get PDF
    We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across the illuminated edge of the Horsehead nebula and especially their survival and properties in the HII region. We present spectral mapping observations taken with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong AIB at 11.3 microns is detected in the HII region, relative to the other AIBs at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be correlated with the intensity of the [NeII] at 12.8 microns and of Halpha, which shows that the emitters of the 11.3 microns band are located in the ionised gas. The survival of PAHs in the HII region could be due to the moderate intensity of the radiation field (G0 about 100) and the lack of photons with energy above about 25eV. The enhancement of the intensity of the 11.3 microns band in the HII region, relative to the other AIBs can be explained by the presence of neutral PAHs. Our observations highlight a transition region between ionised and neutral PAHs observed with ideal conditions in our Galaxy. A scenario where PAHs can survive in HII regions and be significantly neutral could explain the detection of a prominent 11.3 microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&

    Tracing the energetics and evolution of dust with Spitzer : a chapter in the history of the Eagle Nebula

    Get PDF
    Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR)with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M16), one of the best known star-forming regions. Aims. We present MIPSGAL observations of M16 at 24 and 70 μm and combine them with previous IR data. The mid-IR image shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 μm. The morphologies at 24 and 70 μm are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 μm that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions. Methods. We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs).We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (χ/χ0). Results. Within the PDRs, the inferred dust temperature (~35 K), the dust-size distribution, and the radiation field intensity (χ/χ0 < 1) are consistent with expectations. Within the inner shell, the dust is hotter (~70 K). Moreover, the radiation field required to fit the SED is larger than that provided by NGC 6611 (χ/χ0 > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated very small grains. (2) The dust emission arises from a hot (~10^6 K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k ~ 5 × 10^7 K cm^(−3). Conclusions. We suggest two interpretations for the M16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M16 have a major impact on the carbon dustsize distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission

    Gauge fields and infinite chains of dualities

    Get PDF
    We show that the particle states of Maxwell's theory, in DD dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E11. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincar\'e group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.Comment: 37 page

    Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities

    Full text link
    The thermal conductivity κ\kappa of the Kondo insulator SmB6_6 was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term κ0/T\kappa_0/T at T0T \to 0 is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of κ(T)\kappa(T) with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities.Comment: publish versio

    Supersymmetric Higher Spin Theories

    Full text link
    We revisit the higher spin extensions of the anti de Sitter algebra in four dimensions that incorporate internal symmetries and admit representations that contain fermions, classified long ago by Konstein and Vasiliev. We construct the dS4dS_4, Euclidean and Kleinian version of these algebras, as well as the corresponding fully nonlinear Vasiliev type higher spin theories, in which the reality conditions we impose on the master fields play a crucial role. The N=2{\cal N}=2 supersymmetric higher spin theory in dS4dS_4, on which we elaborate further, is included in this class of models. A subset of Konstein-Vasiliev algebras are the higher spin extensions of the AdS4AdS_4 superalgebras osp(4N)osp(4|{\cal N}) for N=1,2,4{\cal N}=1,2,4 mod 4 and can be realized using fermionic oscillators. We tensor the higher superalgebras of the latter kind with appropriate internal symmetry groups and show that the N=3{\cal N}=3 mod 4 higher spin algebras are isomorphic to those with N=4{\cal N}=4 mod 4. We describe the fully nonlinear higher spin theories based on these algebras as well, and we elaborate further on the N=6{\cal N}=6 supersymmetric theory, providing two equivalent descriptions one of which exhibits manifestly its relation to the N=8{\cal N}=8 supersymmetric higher spin theory.Comment: 30 pages. Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasilie

    Are we seeing accretion flows in a 250kpc-sized Ly-alpha halo at z=3?

    Full text link
    Using MUSE on the ESO-VLT, we obtained a 4 hour exposure of the z=3.12 radio galaxy MRC0316-257. We detect features down to ~10^-19 erg/s/cm^2/arcsec^2 with the highest surface brightness regions reaching more than a factor of 100 higher. We find Ly-alpha emission out to ~250 kpc in projection from the active galactic nucleus (AGN). The emission shows arc-like morphologies arising at 150-250 kpc from the nucleus in projection with the connected filamentary structures reaching down into the circum-nuclear region. The most distant arc is offset by 700 km/s relative to circum-nuclear HeII 1640 emission, which we assume to be at the systemic velocity. As we probe emission closer to the nucleus, the filamentary emission narrows in projection on the sky, the relative velocity decreases to ~250 km/s, and line full-width at half maximum range from 300-700 km/s. From UV line ratios, the emission on scales of 10s of kpc from the nucleus along a wide angle in the direction of the radio jets is clearly excited by the radio jets and ionizing radiation of the AGN. Assuming ionization equilibrium, the more extended emission outside of the axis of the jet direction would require 100% or more illumination to explain the observed surface brightness. High speed (>300 km/s) shocks into rare gas would provide sufficiently high surface brightness. We discuss the possibility that the arcs of Ly-alpha emission represent accretion shocks and the filamentary emission represent gas flows into the halo, and compare our results with gas accretion simulations.Comment: 4 pages, 2 figures, 1 table, A&A letters accepte
    corecore