122 research outputs found

    Merkel Cells as Putative Regulatory Cells in Skin Disorders: An In Vitro Study

    Get PDF
    Merkel cells (MCs) are involved in mechanoreception, but several lines of evidence suggest that they may also participate in skin disorders through the release of neuropeptides and hormones. In addition, MC hyperplasias have been reported in inflammatory skin diseases. However, neither proliferation nor reactions to the epidermal environment have been demonstrated. We established a culture model enriched in swine MCs to analyze their proliferative capability and to discover MC survival factors and modulators of MC neuroendocrine properties. In culture, MCs reacted to bFGF by extending outgrowths. Conversely, neurotrophins failed to induce cell spreading, suggesting that they do not act as a growth factor for MCs. For the first time, we provide evidence of proliferation in culture through Ki-67 immunoreactivity. We also found that MCs reacted to histamine or activation of the proton gated/osmoreceptor TRPV4 by releasing vasoactive intestinal peptide (VIP). Since VIP is involved in many pathophysiological processes, its release suggests a putative regulatory role for MCs in skin disorders. Moreover, in contrast to mechanotransduction, neuropeptide exocytosis was Ca2+-independent, as inhibition of Ca2+ channels or culture in the absence of Ca2+ failed to decrease the amount of VIP released. We conclude that neuropeptide release and neurotransmitter exocytosis may be two distinct pathways that are differentially regulated

    Rational identification of a Cdc42 inhibitor presents a new regimen for long- term hematopoietic stem cell mobilization

    Get PDF
    Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization

    Importance of Non-Selective Cation Channel TRPV4 Interaction with Cytoskeleton and Their Reciprocal Regulations in Cultured Cells

    Get PDF
    BACKGROUND: TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE: TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients

    Efficacy of Pyrethroid-Pyriproxyfen and Pyrethroid-Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) for the Control of Non-Anopheles Mosquitoes: Secondary Analysis from a Cluster Randomised Controlled Trial (cRCT)

    Get PDF
    The efficacy of a vector control tool in reducing mosquito biting is crucial for its acceptability. The present study compared the vector density of Culex spp. And Mansonia spp. across clusters, which received two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) and a standard pyrethroid-only LLIN, and assessed the seasonality of these mosquito genera. A total of 85,723 Culex spp. and 144,025 Mansonia spp. were caught over the study period. The density of Culex and Mansonia was reduced in all three arms over the study period. There was no evidence of a significant reduction in the indoor or outdoor density of Culex spp. in either dual-a.i. LLIN arm as compared to the standard pyrethroid-only net arm. A similar trend was observed with Mansonia spp. A high density of Culex spp. was found both in rainy and dry seasons, while for Mansonia spp., this was mainly observed during the rainy season. These results suggest that the novel insecticides in the dual-a.i. LLINs did not have an additional impact on these species and that pyrethroids might still be effective on them. Further work is required to determine whether these species of mosquitoes have resistance to the insecticides tested in this trial

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    Conceptual Retrieval for Unique Entities Does Not Require Proper Names

    No full text
    When asked to describe unique entities by providing specific, identifying information, people typically include proper names for other, related concepts (e.g. song titles when describing a musician). Here, we investigated whether proper names are necessary to accurately describe famous persons and places. Participants (healthy adults, N = 39) were shown names of famous persons or landmarks and asked to provide uniquely-identifying information about each, without using proper nouns. Their performance was compared to individuals who were unrestricted in proper noun use in this task. The current participants, who were prevented from using proper names, performed similarly to comparison participants who could use proper names. Additionally, the current participants performed significantly better than participants with damage to the left temporal pole (who have impaired proper noun retrieval due to their brain damage). These findings indicate that retrieval of proper nouns is not necessary to correctly identify and define semantically unique entities
    • …
    corecore