108 research outputs found

    Bookkeeping, a new logbook system for ALICE

    Get PDF
    The ALICE experiment at CERN’s Large Hadron Collider is designed to study the physics of strongly interacting matter at extreme energy densities, where a quark-gluon plasma is expected to be formed. After a major upgrade, the new ALICE Online-Offline computational system expects to read an estimated throughput of 3.5TB/s of raw data and store and index 900Gb/s reconstructed data. The complexity of this endeavour implies the need for a well-developed and integrated logbook platform, able to keep track of the experiment’s activities and readily provide a history state of the system. The Bookkeeping application has been developed as part of the new ALICE Online graphical interfaces suite and allows users to insert, filter, track, and search system updates. Bookkeeping plays a central role in its integration with other components, which need to either read or update the system state. Furthermore, it builds global and individual system performance statistics which in turn help improve the overall efficiency of the experiment. This paper introduces the new Bookkeeping platform, it showcases its functionalities and purpose, details the means that have been put in place to fulfil all the requirements and presents an overview of its use during the first year of ALICE Run 3 data taking

    Importance of Non-Selective Cation Channel TRPV4 Interaction with Cytoskeleton and Their Reciprocal Regulations in Cultured Cells

    Get PDF
    BACKGROUND: TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE: TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients

    Rational identification of a Cdc42 inhibitor presents a new regimen for long- term hematopoietic stem cell mobilization

    Get PDF
    Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization

    Efficacy of Pyrethroid-Pyriproxyfen and Pyrethroid-Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) for the Control of Non-Anopheles Mosquitoes: Secondary Analysis from a Cluster Randomised Controlled Trial (cRCT)

    Get PDF
    The efficacy of a vector control tool in reducing mosquito biting is crucial for its acceptability. The present study compared the vector density of Culex spp. And Mansonia spp. across clusters, which received two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) and a standard pyrethroid-only LLIN, and assessed the seasonality of these mosquito genera. A total of 85,723 Culex spp. and 144,025 Mansonia spp. were caught over the study period. The density of Culex and Mansonia was reduced in all three arms over the study period. There was no evidence of a significant reduction in the indoor or outdoor density of Culex spp. in either dual-a.i. LLIN arm as compared to the standard pyrethroid-only net arm. A similar trend was observed with Mansonia spp. A high density of Culex spp. was found both in rainy and dry seasons, while for Mansonia spp., this was mainly observed during the rainy season. These results suggest that the novel insecticides in the dual-a.i. LLINs did not have an additional impact on these species and that pyrethroids might still be effective on them. Further work is required to determine whether these species of mosquitoes have resistance to the insecticides tested in this trial

    Pre-intervention characteristics of the mosquito species in Benin in preparation for a randomized controlled trial assessing the efficacy of dual active-ingredient long-lasting insecticidal nets for controlling insecticide-resistant malaria vectors.

    Get PDF
    BACKGROUND: This study provides detailed characteristics of vector populations in preparation for a three-arm cluster randomized controlled trial (RCT) aiming to compare the community impact of dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) that combine two novel insecticide classes-chlorfenapyr or pyriproxifen-with alpha-cypermethrin to improve the prevention of malaria transmitted by insecticide-resistant vectors compared to standard pyrethroid LLINs. METHODS: The study was carried out in 60 villages across Cove, Zangnanando and Ouinhi districts, southern Benin. Mosquito collections were performed using human landing catches (HLCs). After morphological identification, a sub-sample of Anopheles gambiae s.l. were dissected for parity, analyzed by PCR for species and presence of L1014F kdr mutation and by ELISA-CSP to identify Plasmodium falciparum sporozoite infection. WHO susceptibility tube tests were performed by exposing adult An. gambiae s.l., collected as larvae from each district, to 0.05% alphacypermethrin, 0.75% permethrin, 0.1% bendiocarb and 0.25% pirimiphos-methyl. Synergist assays were also conducted with exposure first to 4% PBO followed by alpha-cypermethrin. RESULTS: An. gambiae s.l. (n = 10807) was the main malaria vector complex found followed by Anopheles funestus s.l. (n = 397) and Anopheles nili (n = 82). An. gambiae s.l. was comprised of An. coluzzii (53.9%) and An. gambiae s.s. (46.1%), both displaying a frequency of the L1014F kdr mutation >80%. Although more than 80% of people slept under standard LLIN, human biting rate (HBR) in An. gambiae s.l. was higher indoors [26.5 bite/person/night (95% CI: 25.2-27.9)] than outdoors [18.5 b/p/n (95% CI: 17.4-19.6)], as were the trends for sporozoite rate (SR) [2.9% (95% CI: 1.7-4.8) vs 1.8% (95% CI: 0.6-3.8)] and entomological inoculation rate (EIR) [21.6 infected bites/person/month (95% CI: 20.4-22.8) vs 5.4 (95% CI: 4.8-6.0)]. Parous rate was 81.6% (95%CI: 75.4-88.4). An. gambiae s.l. was resistant to alpha-cypermethrin and permethrin but, fully susceptible to bendiocarb and pirimiphos-methyl. PBO pre-exposure followed by alpha-cypermethrin treatment induced a higher 24 hours mortality compared to alphacypermethrin alone but not exceeding 40%. CONCLUSIONS: Despite a high usage of standard pyrethroid LLINs, the study area is characterized by intense malaria transmission. The main vectors An. coluzzii and An. gambiae s.s. were both highly resistant to pyrethroids and displayed multiple resistance mechanisms, L1014F kdr mutation and mixed function oxidases. These conditions of the study area make it an appropriate site to conduct the trial that aims to assess the effect of novel dual-AI LLINs on malaria transmitted by insecticide-resistant vectors

    Efficacy of pyriproxyfen-pyrethroid long-lasting insecticidal nets (LLINs) and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs for malaria control in Benin: a cluster-randomised, superiority trial.

    Get PDF
    BACKGROUND: New classes of long-lasting insecticidal nets (LLINs) combining mixtures of insecticides with different modes of action could put malaria control back on track after rebounds in transmission across sub-Saharan Africa. We evaluated the relative efficacy of pyriproxyfen-pyrethroid LLINs and chlorfenapyr-pyrethroid LLINs compared with standard LLINs against malaria transmission in an area of high pyrethroid resistance in Benin. METHODS: We conducted a cluster-randomised, superiority trial in Zou Department, Benin. Clusters were villages or groups of villages with a minimum of 100 houses. We used restricted randomisation to randomly assign 60 clusters to one of three LLIN groups (1:1:1): to receive nets containing either pyriproxyfen and alpha-cypermethrin (pyrethroid), chlorfenapyr and alpha-cypermethrin, or alpha-cypermethrin only (reference). Households received one LLIN for every two people. The field team, laboratory staff, analyses team, and community members were masked to the group allocation. The primary outcome was malaria case incidence measured over 2 years after net distribution in a cohort of children aged 6 months-10 years, in the intention-to-treat population. This study is ongoing and is registered with ClinicalTrials.gov, NCT03931473. FINDINGS: Between May 23 and June 24, 2019, 53 854 households and 216 289 inhabitants were accounted for in the initial census and included in the study. Between March 19 and 22, 2020, 115 323 LLINs were distributed to 54 030 households in an updated census. A cross-sectional survey showed that study LLIN usage was highest at 9 months after distribution (5532 [76·8%] of 7206 participants), but decreased by 24 months (4032 [60·6%] of 6654). Mean malaria incidence over 2 years after LLIN distribution was 1·03 cases per child-year (95% CI 0·96-1·09) in the pyrethroid-only LLIN reference group, 0·84 cases per child-year (0·78-0·90) in the pyriproxyfen-pyrethroid LLIN group (hazard ratio [HR] 0·86, 95% CI 0·65-1·14; p=0·28), and 0·56 cases per child-year (0·51-0·61) in the chlorfenapyr-pyrethroid LLIN group (HR 0·54, 95% CI 0·42-0·70; p<0·0001). INTERPRETATION: Over 2 years, chlorfenapyr-pyrethroid LLINs provided greater protection from malaria than pyrethroid-only LLINs in an area with pyrethroid-resistant mosquitoes. Pyriproxyfen-pyrethroid LLINs conferred protection similar to pyrethroid-only LLINs. These findings provide crucial second-trial evidence to enable WHO to make policy recommendations on these new LLIN classes. This study confirms the importance of chlorfenapyr as an LLIN treatment to control malaria in areas with pyrethroid-resistant vectors. However, an arsenal of new active ingredients is required for successful long-term resistance management, and additional innovations, including pyriproxyfen, need to be further investigated for effective vector control strategies. FUNDING: UNITAID, The Global Fund

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    Assessing the efficacy of two dual-active ingredients long-lasting insecticidal nets for the control of malaria transmitted by pyrethroid-resistant vectors in Benin: study protocol for a three-arm, single-blinded, parallel, cluster-randomized controlled trial.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are currently the primary method of malaria control in sub-Saharan Africa and have contributed to a significant reduction in malaria burden over the past 15 years. However, this progress is threatened by the wide-scale selection of insecticide-resistant malaria vectors. It is, therefore, important to accelerate the generation of evidence for new classes of LLINs. METHODS: This protocol presents a three-arm superiority, single-blinded, cluster randomized controlled trial to evaluate the impact of 2 novel dual-active ingredient LLINs on epidemiological and entomological outcomes in Benin, a malaria-endemic area with highly pyrethroid-resistant vector populations. The study arms consist of (i) Royal Guard® LLIN, a net combining a pyrethroid (alpha-cypermethrin) plus an insect growth regulator (pyriproxyfen), which in the adult female is known to disrupt reproduction and egg fertility; (ii) Interceptor G2® LLIN, a net incorporating two adulticides (alpha-cypermethrin and chlorfenapyr) with different modes of action; and (iii) the control arm, Interceptor® LLIN, a pyrethroid (alpha-cypermethrin) only LLIN. In all arms, one net for every 2 people will be distributed to each household. Sixty clusters were identified and randomised 1:1:1 to each study arm. The primary outcome is malaria case incidence measured over 24 months through active case detection in a cohort of 25 children aged 6 months to 10 years, randomly selected from each cluster. Secondary outcomes include 1) malaria infection prevalence (all ages) and prevalence of moderate to severe anaemia in children under 5 years old, measured at 6 and 18 months post-intervention; 2) entomological indices measured every 3 months using human landing catches over 24 months. Insecticide resistance intensity will also be monitored over the study period. DISCUSSION: This study is the second cluster randomised controlled trial to evaluate the efficacy of these next-generation LLINs to control malaria transmitted by insecticide-resistant mosquitoes. The results of this study will form part of the WHO evidence-based review to support potential public health recommendations of these nets and shape malaria control strategies of sub-Saharan Africa for the next decade. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03931473 , registered on 30 April 2019

    Diversity and ecological niche model of malaria vector and non-vector mosquito species in Covè, Ouinhi, and Zangnanado, Southern Benin.

    Get PDF
    The present study aimed to assess mosquito species diversity, distribution, and ecological preferences in the Covè, Ouinhi, and Zangnanado communes, Southern Benin. Such information is critical to understand mosquito bio-ecology and to focus control efforts in high-risk areas for vector-borne diseases. Mosquito collections occurred quarterly in 60 clusters between June 2020 and April 2021, using human landing catches. In addition to the seasonal mosquito abundance, Shannon's diversity, Simpson, and Pielou's equitability indices were also evaluated to assess mosquito diversity. Ecological niche models were developed with MaxEnt using environmental variables to assess species distribution. Overall, mosquito density was higher in the wet season than in the dry season in all communes. A significantly higher Shannon's diversity index was also observed in the wet season than in the dry seasons in all communes (p < 0.05). Habitat suitability of An. gambiae s.s., An. coluzzii, Cx. quinquefasciatus and Ma. africana was highly influenced by slope, isothermality, site aspect, elevation, and precipitation seasonality in both wet and dry seasons. Overall, depending on the season, the ecological preferences of the four main mosquito species were variable across study communes. This emphasizes the impact of environmental conditions on mosquito species distribution. Moreover, mosquito populations were found to be more diverse in the wet season compared to the dry season
    • …
    corecore