429 research outputs found
Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics
We recall that the full susceptibility series of the Ising model, modulo
powers of the prime 2, reduce to algebraic functions. We also recall the
non-linear polynomial differential equation obtained by Tutte for the
generating function of the q-coloured rooted triangulations by vertices, which
is known to have algebraic solutions for all the numbers of the form , the holonomic status of the q= 4 being unclear. We focus on the
analysis of the q= 4 case, showing that the corresponding series is quite
certainly non-holonomic. Along the line of a previous work on the
susceptibility of the Ising model, we consider this q=4 series modulo the first
eight primes 2, 3, ... 19, and show that this (probably non-holonomic) function
reduces, modulo these primes, to algebraic functions. We conjecture that this
probably non-holonomic function reduces to algebraic functions modulo (almost)
every prime, or power of prime numbers. This raises the question to see whether
such remarkable non-holonomic functions can be seen as ratio of diagonals of
rational functions, or algebraic, functions of diagonals of rational functions.Comment: 27 page
High order Fuchsian equations for the square lattice Ising model:
This paper deals with , the six-particle contribution to
the magnetic susceptibility of the square lattice Ising model. We have
generated, modulo a prime, series coefficients for . The
length of the series is sufficient to produce the corresponding Fuchsian linear
differential equation (modulo a prime). We obtain the Fuchsian linear
differential equation that annihilates the "depleted" series
. The factorization of the corresponding differential
operator is performed using a method of factorization modulo a prime introduced
in a previous paper. The "depleted" differential operator is shown to have a
structure similar to the corresponding operator for . It
splits into factors of smaller orders, with the left-most factor of order six
being equivalent to the symmetric fifth power of the linear differential
operator corresponding to the elliptic integral . The right-most factor has
a direct sum structure, and using series calculated modulo several primes, all
the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page
The Ising model and Special Geometries
We show that the globally nilpotent G-operators corresponding to the factors
of the linear differential operators annihilating the multifold integrals
of the magnetic susceptibility of the Ising model () are
homomorphic to their adjoint. This property of being self-adjoint up to
operator homomorphisms, is equivalent to the fact that their symmetric square,
or their exterior square, have rational solutions. The differential Galois
groups are in the special orthogonal, or symplectic, groups. This self-adjoint
(up to operator equivalence) property means that the factor operators we
already know to be Derived from Geometry, are special globally nilpotent
operators: they correspond to "Special Geometries".
Beyond the small order factor operators (occurring in the linear differential
operators associated with and ), and, in particular,
those associated with modular forms, we focus on the quite large order-twelve
and order-23 operators. We show that the order-twelve operator has an exterior
square which annihilates a rational solution. Then, its differential Galois
group is in the symplectic group . The order-23 operator
is shown to factorize in an order-two operator and an order-21 operator. The
symmetric square of this order-21 operator has a rational solution. Its
differential Galois group is, thus, in the orthogonal group
.Comment: 33 page
Integrable mappings and polynomial growth
We describe birational representations of discrete groups generated by
involutions, having their origin in the theory of exactly solvable
vertex-models in lattice statistical mechanics. These involutions correspond
respectively to two kinds of transformations on matrices: the
inversion of the matrix and an (involutive) permutation of the
entries of the matrix. We concentrate on the case where these permutations are
elementary transpositions of two entries. In this case the birational
transformations fall into six different classes. For each class we analyze the
factorization properties of the iteration of these transformations. These
factorization properties enable to define some canonical homogeneous
polynomials associated with these factorization properties. Some mappings yield
a polynomial growth of the complexity of the iterations. For three classes the
successive iterates, for , actually lie on elliptic curves. This analysis
also provides examples of integrable mappings in arbitrary dimension, even
infinite. Moreover, for two classes, the homogeneous polynomials are shown to
satisfy non trivial non-linear recurrences. The relations between
factorizations of the iterations, the existence of recurrences on one or
several variables, as well as the integrability of the mappings are analyzed.Comment: 45 page
Landau singularities and singularities of holonomic integrals of the Ising class
We consider families of multiple and simple integrals of the ``Ising class''
and the linear ordinary differential equations with polynomial coefficients
they are solutions of. We compare the full set of singularities given by the
roots of the head polynomial of these linear ODE's and the subset of
singularities occurring in the integrals, with the singularities obtained from
the Landau conditions. For these Ising class integrals, we show that the Landau
conditions can be worked out, either to give the singularities of the
corresponding linear differential equation or the singularities occurring in
the integral. The singular behavior of these integrals is obtained in the
self-dual variable , with , where is the
usual Ising model coupling constant. Switching to the variable , we show
that the singularities of the analytic continuation of series expansions of
these integrals actually break the Kramers-Wannier duality. We revisit the
singular behavior (J. Phys. A {\bf 38} (2005) 9439-9474) of the third
contribution to the magnetic susceptibility of Ising model at the
points and show that is not singular at the
corresponding points inside the unit circle , while its analytical
continuation in the variable is actually singular at the corresponding
points oustside the unit circle ().Comment: 34 pages, 1 figur
Experimental mathematics on the magnetic susceptibility of the square lattice Ising model
We calculate very long low- and high-temperature series for the
susceptibility of the square lattice Ising model as well as very long
series for the five-particle contribution and six-particle
contribution . These calculations have been made possible by the
use of highly optimized polynomial time modular algorithms and a total of more
than 150000 CPU hours on computer clusters. For 10000 terms of the
series are calculated {\it modulo} a single prime, and have been used to find
the linear ODE satisfied by {\it modulo} a prime.
A diff-Pad\'e analysis of 2000 terms series for and
confirms to a very high degree of confidence previous conjectures about the
location and strength of the singularities of the -particle components of
the susceptibility, up to a small set of ``additional'' singularities. We find
the presence of singularities at for the linear ODE of ,
and for the ODE of , which are {\it not} singularities
of the ``physical'' and that is to say the
series-solutions of the ODE's which are analytic at .
Furthermore, analysis of the long series for (and )
combined with the corresponding long series for the full susceptibility
yields previously conjectured singularities in some , .
We also present a mechanism of resummation of the logarithmic singularities
of the leading to the known power-law critical behaviour occurring
in the full , and perform a power spectrum analysis giving strong
arguments in favor of the existence of a natural boundary for the full
susceptibility .Comment: 54 pages, 2 figure
- …
