We recall that the full susceptibility series of the Ising model, modulo
powers of the prime 2, reduce to algebraic functions. We also recall the
non-linear polynomial differential equation obtained by Tutte for the
generating function of the q-coloured rooted triangulations by vertices, which
is known to have algebraic solutions for all the numbers of the form 2+2cos(jπ/n), the holonomic status of the q= 4 being unclear. We focus on the
analysis of the q= 4 case, showing that the corresponding series is quite
certainly non-holonomic. Along the line of a previous work on the
susceptibility of the Ising model, we consider this q=4 series modulo the first
eight primes 2, 3, ... 19, and show that this (probably non-holonomic) function
reduces, modulo these primes, to algebraic functions. We conjecture that this
probably non-holonomic function reduces to algebraic functions modulo (almost)
every prime, or power of prime numbers. This raises the question to see whether
such remarkable non-holonomic functions can be seen as ratio of diagonals of
rational functions, or algebraic, functions of diagonals of rational functions.Comment: 27 page