21 research outputs found

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques

    Full text link
    Natural convection in porous media is a highly nonlinear multiphysical problem relevant to many engineering applications (e.g., the process of CO2\mathrm{CO_2} sequestration). Here, we present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional autoencoders for the compression and reconstruction and either radial basis function (RBF) interpolation or artificial neural networks (ANNs) for mapping parameters of partial differential equations (PDEs) on the corresponding nonlinear manifolds. To benchmark our approach, we also describe linear compression and reconstruction processes relying on proper orthogonal decomposition (POD) and ANNs. We present comprehensive comparisons among different models through three benchmark problems. The reduced order models, linear and nonlinear approaches, are much faster than the finite element model, obtaining a maximum speed-up of 7Ă—1067 \times 10^{6} because our framework is not bound by the Courant-Friedrichs-Lewy condition; hence, it could deliver quantities of interest at any given time contrary to the finite element model. Our model's accuracy still lies within a mean squared error of 0.07 (two-order of magnitude lower than the maximum value of the finite element results) in the worst-case scenario. We illustrate that, in specific settings, the nonlinear approach outperforms its linear counterpart and vice versa. We hypothesize that a visual comparison between principal component analysis (PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE) could indicate which method will perform better prior to employing any specific compression strategy

    Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    Get PDF
    Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.post-print10768 K

    Cryptococcus: from environmental saprophyte to global pathogen.

    Get PDF
    Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development

    Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation

    No full text
    A simulation tool capable of speeding up the calculation for linear poroelasticity problems in heterogeneous porous media is of large practical interest for engineers, in particular, to effectively perform sensitivity analyses, uncertainty quantification, optimization, or control operations on the fluid pressure and bulk deformation fields. Towards this goal, we present here a non-intrusive model reduction framework using proper orthogonal decomposition (POD) and neural networks based on the usual offline-online paradigm. As the conductivity of porous media can be highly heterogeneous and span several orders of magnitude, we utilize the interior penalty discontinuous Galerkin (DG) method as a full order solver to handle discontinuity and ensure local mass conservation during the offline stage. We then use POD as a data compression tool and compare the nested POD technique, in which time and uncertain parameter domains are compressed consecutively, to the classical POD method in which all domains are compressed simultaneously. The neural networks are finally trained to map the set of uncertain parameters, which could correspond to material properties, boundary conditions, or geometric characteristics, to the collection of coefficients calculated from an L2 projection over the reduced basis. We then perform a non-intrusive evaluation of the neural networks to obtain coefficients corresponding to new values of the uncertain parameters during the online stage. We show that our framework provides reasonable approximations of the DG solution, but it is significantly faster. Moreover, the reduced order framework can capture sharp discontinuities of both displacement and pressure fields resulting from the heterogeneity in the media conductivity, which is generally challenging for intrusive reduced order methods. The sources of error are presented, showing that the nested POD technique is computationally advantageous and still provides comparable accuracy to the classical POD method. We also explore the effect of different choices of the hyperparameters of the neural network on the framework performance

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques

    No full text
    Natural convection in porous media is a highly nonlinear multiphysical problem relevant to many engineering applications (e.g., the process of CO2 sequestration). Here, we extend and present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional autoencoders for the compression and reconstruction and either radial basis function (RBF) interpolation or artificial neural networks (ANNs) for mapping parameters of partial differential equations (PDEs) on the corresponding nonlinear manifolds. To benchmark our approach, we also describe linear compression and reconstruction processes relying on proper orthogonal decomposition (POD) and ANNs. We present comprehensive comparisons among different models through three benchmark problems. The reduced order models, linear and nonlinear approaches, are much faster than the finite element model, obtaining a maximum speed-up of 7×106 because our framework is not bound by the Courant–Friedrichs–Lewy condition; hence, it could deliver quantities of interest at any given time contrary to the finite element model. Our model's accuracy still lies within a relative error of 7% in the worst-case scenario. We illustrate that, in specific settings, the nonlinear approach outperforms its linear counterpart and vice versa. We hypothesize that a visual comparison between principal component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) could indicate which method will perform better prior to employing any specific compression strategy

    Sexual disorders after heart transplantation.

    No full text
    11noreservedmixedBASILE A; MACCHERINI M; DICIOLLA F; BALISTRERI A; BOUKLAS D; LISI G; TOSCANO T; S. MONDILLO; BIAGIOLI B; SIMEONE F; PAPALIA UBasile, A; Maccherini, M; Diciolla, F; Balistreri, A; Bouklas, D; Lisi, G; Toscano, T; Mondillo, Sergio; Biagioli, Bonizella; Simeone, F; Papalia, U
    corecore