6 research outputs found

    3D hand shape and pose from images in the wild

    No full text
    We present in this work the first end-to-end deep learning based method that predicts both 3D hand shape and pose from RGB images in the wild. Our network consists of the concatenation of a deep convolutional encoder, and a fixed model-based decoder. Given an input image, and optionally 2D joint detections obtained from an independent CNN, the encoder predicts a set of hand and view parameters. The decoder has two components: A pre-computed articulated mesh deformation hand model that generates a 3D mesh from the hand parameters, and a re-projection module controlled by the view parameters that projects the generated hand into the image domain. We show that using the shape and pose prior knowledge encoded in the hand model within a deep learning framework yields state-of-the-art performance in 3D pose prediction from images on standard benchmarks, and produces geometrically valid and plausible 3D reconstructions. Additionally, we show that training with weak supervision in the form of 2D joint annotations on datasets of images in the wild, in conjunction with full supervision in the form of 3D joint annotations on limited available datasets allows for good generalization to 3D shape and pose predictions on images in the wild

    Cross-modal deep face normals with deactivable skip connections

    Get PDF
    We present an approach for estimating surface normals from in-the-wild color images of faces. While data-driven strategies have been proposed for single face images, limited available ground truth data makes this problem difficult. To alleviate this issue, we propose a method that can leverage all available image and normal data, whether paired or not, thanks to a novel cross-modal learning architecture. In particular, we enable additional training with single modality data, either color or normal, by using two encoder-decoder networks with a shared latent space. The proposed architecture also enables face details to be transferred between the image and normal domains, given paired data, through skip connections between the image encoder and normal decoder. Core to our approach is a novel module that we call deactivable skip connections, which allows integrating both the auto-encoded and image-to-normal branches within the same architecture that can be trained end-to-end. This allows learning of a rich latent space that can accurately capture the normal information. We compare against state-of-the-art methods and show that our approach can achieve significant improvements, both quantitative and qualitative, with natural face images

    A conditional deep generative model of people in natural images

    No full text
    We propose a deep generative model of humans in natural images which keeps 2D pose separated from other latent factors of variation, such as background scene and clothing. In contrast to methods that learn generative models of low-dimensional representations, e.g., segmentation masks and 2D skeletons, our single-stage end-to-end conditional-VAEGAN learns directly on the image space. The flexibility of this approach allows the sampling of people with independent variations of pose and appearance. Moreover, it enables the reconstruction of images conditioned to a given posture, allowing, for instance, pose-transfer from one person to another. We validate our method on the Human3.6M dataset and achieve state-of-the-art results on the ChictopiaPlus benchmark. Our model, named Conditional-DGPose, outperforms the closest related work in the literature. It generates more realistic and accurate images regarding both, body posture and image quality, learning the underlying factors of pose and appearance variation

    A conditional deep generative model of people in natural images

    No full text
    We propose a deep generative model of humans in natural images which keeps 2D pose separated from other latent factors of variation, such as background scene and clothing. In contrast to methods that learn generative models of low-dimensional representations, e.g., segmentation masks and 2D skeletons, our single-stage end-to-end conditional-VAEGAN learns directly on the image space. The flexibility of this approach allows the sampling of people with independent variations of pose and appearance. Moreover, it enables the reconstruction of images conditioned to a given posture, allowing, for instance, pose-transfer from one person to another. We validate our method on the Human3.6M dataset and achieve state-of-the-art results on the ChictopiaPlus benchmark. Our model, named Conditional-DGPose, outperforms the closest related work in the literature. It generates more realistic and accurate images regarding both, body posture and image quality, learning the underlying factors of pose and appearance variation

    Surface based motion retargeting by preserving spatial relationship

    Get PDF
    International audienceRetargeting motion from one character to another is a key process in computer animation. It enables to reuse animations designed for a character to animate another one, or to make performance-driven be faithful to what has been performed by the user. Previous work mainly focused on retargeting skeleton animations whereas the contextual meaning of the motion is mainly linked to the relationship between body surfaces, such as the contact of the palm with the belly. In this paper we propose a new context-aware motion retargeting framework, based on deforming a target character to mimic a source character poses using harmonic mapping. We also introduce the idea of Context Graph: modeling local interactions between surfaces of the source character, to be preserved in the target character, in order to ensure fidelity of the pose. In this approach, no rigging is required as we directly manipulate the surfaces, which makes the process totally automatic. Our results demonstrate the relevance of this automatic rigging-less approach on motions with complex contacts and interactions between the character's surface
    corecore