6 research outputs found

    High Voltage Electrical Power System Architecture optimized for electrical propulsion and high power payload

    No full text
    International audienceThere is a large design variety of power buses, with voltage levels typically ranging from 28 to 100V. This state-of-art is well adapted to past and current needs in term of power conditioning and disctribution for science and telecommunication satellites. NEvertheless, a short-term need is rising for higher operating voltages, especially for the new electric propulsion systems and high-power payloads. The currently available solutions are to add DC/DC converters inisde echa user equipement to generate all its necessary internal supply lines for the satellite primary power bus. For high power/high voltage loads, this DC/DC stage leads to power dissipation and lowers the overall efficiency of the power chain. A major step forward would be to increase the voltage directly at the level of the primary bus in order to remove some voltage conversion stages leading to lower mass, cost, volume and power dissipation. The work performed within the European Union H2020 project "HV-EPSA" was aimed to study benefits and impact of the implementation of a bus voltage from 300V to 600V, including solar array, solar array drive mechnism, power conditioning and distribution, Hall effect thruster with direct drive topology, battery and harnesses. The main problematic to solve were arcing at high voltage/low pressure (Paschen law), interaction between plasma (natural and from plasmic propulsion) and solar arrays, and distribution function using GaN mosfet. Several test campaigns were performed and the results are presented in the paper.Il existe une grande variété de conception de bus d'alimentation, avec des niveaux de tension allant généralement de 28 à 100 V. Cet état de l'art est bien adapté aux besoins passés et actuels en termes de conditionnement et de distribution de puissance pour les satellites scientifiques et de télécommunications. Néanmoins, le besoin à court terme augmente pour des tensions de fonctionnement plus élevées, en particulier pour les nouveaux systèmes de propulsion électrique et les charges utiles à haute puissance. Les solutions actuellement disponibles consistent à ajouter des convertisseurs DC / DC à l'intérieur de chaque équipement utilisateur afin de générer toutes ses lignes d'alimentation interne nécessaires pour le bus d'alimentation primaire du satellite. Pour les charges haute puissance / haute tension, cet étage DC / DC conduit à une dissipation de puissance et diminue l'efficacité globale de la chaîne de puissance. Un grand pas en avant serait d'augmenter la tension directement au niveau du bus primaire afin de supprimer certains étages de conversion de tension conduisant à une diminution de la masse, du coût, du volume et de la dissipation de puissance. Les travaux réalisés dans le cadre du projet H2020 de l'Union européenne "HV-EPSA" visaient à étudier les avantages et l'impact de la mise en œuvre d'une tension de bus de 300V à 600V, y compris les panneaux solaires, les systèmes d'entraînement de panneaux solaires, le conditionnement et la distribution de l'énergie, le propulseur à effet Hall avec topologie à entraînement direct, batterie et cablâge. Les principaux problèmes à résoudre étaient les arcs à haute tension / basse pression (loi de Paschen), l'interaction entre le plasma (naturel et de propulsion plasmique) et les panneaux solaires, et la fonction de distribution à l'aide du mosfet GaN. Plusieurs campagnes de tests ont été réalisées et les résultats sont présentés dans l'article

    SMOSREX : A Long Term Field Campaign Experiment for Soil Moisture and Land Surface Processes Remote Sensing

    No full text
    International audienceThe primary goal of the SMOS mission is to deliver global fields of sea surface salinity and surface soil moisture using L-band (1.4 GHz) radiometry. Within the context of the preparation of SMOS activities over land, a field campaign, SMOSREX (Surface Monitoring Of the Soil Reservoir EXperiment), has been in operation since January 2001 in Mauzac, near Toulouse in France. Continuous ground measurements of meteorological variables, soil moisture and temperature profiles have been taken over bare soil and a grass plot left fallow. Since January 2003, SMOSREX has been providing accurate field measurements of dual polarized L-band brightness temperature up-welling from both bare soil and fallow plots, together with multi-spectral (from visible to infrared frequencies) remote sensing surface data. The scientific objectives are presented in this paper and the corresponding experimental design is described. The experimental concept is totally new since (i) SMOSREX combines land–surface–atmosphere observations, passive microwave measurements and VIS to NIR remote sensing, (ii) SMOSREX is based on highly accurate L-band measurements carried out by a radiometer specifically designed for the experiment, and (iii) SMOSREX provides a unique continuous data set of L-band measurements over several years. The characteristics of the L-band emission are presented at diurnal, seasonal and annual temporal scales, and the emissions are compared over bare soil and natural grass. The surface emissions over bare soil and fallow area are shown to be counter-phased at the diurnal scale due to small variations in vegetation water content and bare soil surface moisture. Innovative long term results using L-band measurements for both bare soil and natural grass are presented in this paper, and the relationship between the surface emission at L-band and surface bare soil moisture is shown to be suitable for a long term period (19 months). Soil freezing is shown to be drastically different for bare soil and vegetation covered plots, with a large threshold effect on microwave surface emission

    Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels

    Get PDF
    1. Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. 2. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected. 3. In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, β-pompilidotoxin (100 μM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. 4. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between β-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin

    La campagne Passy-2015 : dynamique atmosphérique et qualité de l’air dans la vallée de l’Arve

    No full text
    International audienceWintertime anticyclonic conditions, associated with clear sky and cold nights, trigger the formation of persistent layers of stable air over the ground. In an urban area, these persistent layers lead to poor air quality, especially when the terrain is mountainous. This is particularly the case in the Arve River Valley near the city of Passy, located 20 km downstream of Chamonix-Mont-Blanc, where air quality stands among the poorest ones in France.Beyond the monitoring of air quality, as performed by the Auvergne-Rhône-Alpes air quality agency or within the scientific project DECOMBIO led by the Institute for Geosciences and the Environment (IGE), knowledge of the atmospheric dynamics at the valley scale should be gained to understand how pollutants are dispersed. This is the motivation of the Passy project, which started in 2014. It relies on the Passy-2015 field experiment, whereof presentation, along with the discussion of a few results, is the purpose of the present paper. The objective of this field experiment is to document the atmospheric dynamics in the Arve River Valley during wintertime pollution episodes.The work conducted during the Passy project and the analysis of the Passy-2015 field experiment will benefit from a several-year long collaboration among the different partners. The knowledge thus gained will contribute to refine weather forecast and air quality prediction in the Arve River Valley and, more generally, in mountain urban areas under stable conditions. From an operational perspective, our goal is to improve our ability to forecast critical events such as low temperatures, ice and fog formation, pollution events or locations subject to high pollutant concentration.Les conditions anticycloniques hivernales (ciel clair, nuits froides) conduisent à la formation de couches stables persistantes qui favorisent les épisodes de pollution, particulièrement en terrain montagneux. La vallée de l’Arve est très sensible à ce phénomène, en particulier près de la ville de Passy (Haute-Savoie), située à 20 kilomètres en aval de Chamonix-Mont-Blanc, où la qualité de l’air est l’une des moins bonnes de France.Au-delà du suivi de la qualité de l’air, tel que réalisé par Atmo Auvergne-Rhône-Alpes ou par le projet DECOMBIO piloté par l’Institut des Géosciences et de l’Environnement (IGE), il est primordial d’améliorer la connaissance de la dynamique atmosphérique à l’échelle de la vallée en conditions stables pour mieux comprendre comment, couplée au cycle et à la géographie des émissions, elle pilote la dispersion des polluants. C’est la motivation du projet Passy, initié en 2014. Ce projet s’appuie sur les observations de la campagne Passy-2015, présentées dans cet article avec quelques premiers résultats. L’objectif général de cette campagne est de documenter la dynamique atmosphérique au sein de la vallée de l’Arve lors des épisodes de pollution hivernale.Les travaux menés dans le cadre du projet et de l’analyse des données de la campagne s’inscrivent au sein d’une collaboration sur plusieurs années entre les différents partenaires. Ils contribueront à affiner la prévision du temps et de la qualité de l’air dans ce type de vallée, et plus généralement en conditions stables. Il s’agit en particulier d’améliorer la capacité à prévoir des phénomènes critiques, comme les températures minimales, le verglas, le brouillard, les évènements de pollution ou encore les zones de pollution intense
    corecore