111 research outputs found

    Synthesis and DFT investigation of new bismuth-containing MAX phases

    Get PDF
    The M(n + 1)AX(n) phases (M = early transition metal; A = group A element and X = C and N) are materials exhibiting many important metallic and ceramic properties. In the present study powder processing experiments and density functional theory calculations are employed in parallel to examine formation of Zr(2)(Al(1−x)Bi(x))C (0 ≤ x ≤ 1). Here we show that Zr(2)(Al(1−x)Bi(x))C, and particularly with x ≈ 0.58, can be formed from powders even though the end members Zr(2)BiC and Zr(2)AlC seemingly cannot. This represents a significant extension of the MAX phase family, as this is the first report of a bismuth-based MAX phase

    Ab-initio study of Al 1– x

    No full text

    Computational insight on the structural, mechanical and thermal properties of Cu2CdSnSe4 and Cu2HgSnSe4 adamantine materials

    No full text
    Through first-principles calculation based on the density functional theory (DFT) within the pseudo potential-plane wave (PP-PW) approach, we studied the structural, mechanical and thermal properties of Cu2CdSnSe4 and Cu2HgSnSe4 adamantine materials. The calculated lattice parameters are in good agreement with experimental and theoretical reported data. The elastic constants are calculated for both compounds using the static finite strain scheme. The hydrostatic pressure action on the elastic constants predicts that both materials are mechanically stable up to 10 GPa. The polycrystalline mechanical parameters, i.e., the anisotropy factor (A), bulk modulus (B), shear modulus (G), Young's modulus (E), Lame's coefficient (λ) and Poisson's ratio (ν) have been estimated from the calculated single crystal elastic constants. The analysis of B/G ratio shows that the two studied compounds behave as ductile. Based on the calculated mechanical parameters, the Debye temperature and the thermal conductivity have been probed. In the framework of the quasi-harmonic approximation, the temperature dependence of the lattice heat capacity of both crystals has been investigated

    Structural, elastic and lattice dynamical properties of the alkali metal tellurides: First-principles study

    No full text
    We report a detailed first-principles density functional calculations to understand the systematic trends for crystal structure, elastic and lattice dynamical properties of the anti-fluorite alkali metal tellurides M2Te depending from the type of the M cations (M are Li, Na, K and Rb). The calculated equilibrium lattice parameters are in very good agreement with the available experimental data. Single-crystal and polycrystalline elastic moduli and their related properties of the title compounds were calculated via the stress-strain method. The relatively weak values of the calculated elastic moduli demonstrate the weak resistance of these compounds to applied external forces. Phonon dispersion curves throughout the Brillouin zone and corresponding density of states were calculated using the linear response approach. No imaginary phonon modes were found, which indicate the dynamical stability of the examined materials. The atomic displacements at Γ point were determined. Low-frequency dielectric properties and infrared response were investigated
    corecore