169 research outputs found

    Thermal effects on atomic friction

    Full text link
    We model friction acting on the tip of an atomic force microscope as it is dragged across a surface at non-zero temperatures. We find that stick-slip motion occurs and that the average frictional force follows lnv2/3|\ln v|^{2/3}, where vv is the tip velocity. This compares well to recent experimental work (Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average frictional force's dependence on both temperature and tip speed as well as the form of the friction-force distribution function.Comment: Accepted for publication, Physical Review Letter

    Dynamic condensation of water at crack tips in fused silica glass

    Full text link
    Water molecules play a fundamental role in the physics of slow crack propagation in glasses. It is commonly understood that, during stress-corrosion, water molecules that move in the crack cavity effectively reduce the bond strength at the strained crack tip and, thus, support crack propagation. Yet the details of the environmental condition at the crack tip in moist air are not well determined. In a previous work, we reported direct evidence of the presence of a 100 nm long liquid condensate at the crack tip in fused silica glass during very slow crack propagation (10^-9 to 10^-10 m/s). These observations are based on in-situ AFM phase imaging techniques applied on DCDC glass specimens in controlled atmosphere. Here, we discuss the physical origin of the AFM phase contrast between the liquid condensate and the glass surface in relation to tip-sample adhesion induced by capillary bridges. We then report new experimental data on the water condensation length increase with relative humidity in the atmosphere. The measured condensation lengths were much larger than what predicted using the Kelvin equation and expected geometry of the crack tip.Comment: Accepted in JNCS. In pres

    3D transient heat transfer numerical analysis of multiple energy piles

    Get PDF
    This paper presents a three-dimensional (3D) transient heat transfer numerical model for multiple energy piles based on the finite volume method (FVM). The initial and boundary conditions are established and the effects of “thermal short-circulating” between two pipes of a U-tube in energy pile are investigated. Thermal partial differential equations are discretized at the spatial nodal points and solved by linear approximation method. Temperature variations of working fluid, energy pile and its surrounding soil from simulation program are compared with experimental data to validate the developed model. In addition, the influences of fluid flow rate and U-tube shank spacing are analysed. It is established that the shank spacing should be set in a range of 0.06m to 0.10m to reduce heat transfer between the two pipes and meet the structural requirement. Meanwhile, the flow rate should be controlled in a range of 0.5m3/h to 0.7m3/h to avoid the low outlet fluid temperature and decrease the influence of “thermal short-circuiting”

    Relaxation dans les verres isolants et semiconducteurs

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    AFM Imaging in Physiological Environment: From Biomolecules to Living Cells

    No full text
    no abstrac
    corecore