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ABSTRACT 

This paper presents a three-dimensional (3D) transient heat transfer numerical model for multiple energy piles based on the finite 

volume method (FVM). The initial and boundary conditions are established and the effects of “thermal short-circulating” 

between two pipes of a U-tube in energy pile are investigated. Thermal partial differential equations are discretized at the spatial 

nodal points and solved by linear approximation method. Temperature variations of working fluid, energy pile and its 

surrounding soil from simulation program are compared with experimental data to validate the developed model. In addition, the 

influences of fluid flow rate and U-tube shank spacing are analysed. It is established that the shank spacing should be set in a 

range of 0.06m to 0.10m to reduce heat transfer between the two pipes and meet the structural requirement. Meanwhile, the flow 

rate should be controlled in a range of 0.5m3/h to 0.7m3/h to avoid the low outlet fluid temperature and decrease the influence of 

“thermal short-circuiting”. 

Keywords: Energy pile, 3D numerical model, FVM, Thermal short-circulating, Shank spacing 

 

1 Introduction 

Shallow geothermal energy can be utilized to provide space air conditioning for building application. The subsurface ground 

temperature is higher than the ambient temperature in winter and lower in summer, thereby the ground can be used to provide 

heat in winter (as heat source) and cool in summer (as heat sink) [1]. Ground source heat pump (GSHP) is one of the systems 

that take advantage of this shallow energy through ground heat exchangers, such as borehole heat exchanger (BHE). A typical 

BHE consists of one or two plastic U-tubes, mainly polyethylene or polypropylene, inserted into a borehole and fixed with grout. 

A working fluid is circulated within U-tube to exchange heat with the ground. Due to the high initial installation cost, ground 

heat exchanger is integrated into building foundation system, known as “Energy Pile” (EP) [2-7]. The primary merit of the EP 

is its dual functions as building structural component and heat exchanger. Moreover, concrete is regarded as an idea heat transfer 

intermediate owing to its good thermal conductivity and thermal storage capacity [8, 9]. Studies have shown that GSHP with the 
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EP system can save up to 75% of energy for building space heating and cooling compared to the conventional air conditioning 

system [1-3].  

A typical EP structure is shown in Fig. 1. Its main components are the reinforced concrete borehole and U-tube. Many research 

works have been carried out to investigate BHE heat transfer using analytical, numerical and combined methodologies. Eskison 

[10] presented a primary model to determine the mean borehole wall temperature by combining numerical finite difference 

method (FDM) with finite line source model. It is based on the use of non-dimensional temperature response factor, named “g-

function”. The time for a heat impulse of working fluid to reach steady state at the borehole wall is determined and the valid time 

is proposed. Hellstrom et al. [11, 12] proposed a duct storage model (DST) to compute the system efficiency, and utilized a two-

dimensional (2D) finite difference scheme to determine soil temperature variation. Yavuzturk et al. [13, 14] set up a 2D transient 

numerical model to simulate short timescale responses based on the finite volume method (FVM), and modified Eskilson's model 

(g-functions) for the short time step (as short as a few minutes) simulation. The authors later refined their initial model by taking 

the fluid and grout thermal capacities into account [15]. Maestre et al. [16] developed a simplified model to simulate heat transfer 

behaviour within single U-tube BHE based on the electrical analogy method. Thermal response factors (g-functions) are utilized 

to evaluate injection-extraction heat flow to nearby soil, and thermal capacities of the fluid and grout are taken into account for 

simulating the short-term operation under different boundary conditions. Huber et al. [17] developed the EWS model for BHE 

with double U-tubes and simulated the short time response by solving one-dimensional (1D) heat transfer equation in the radial 

direction with the Crank-Nicholson algorithm. Oppelt et al. [18] presented a MISOS model by dividing grout and pipe into 

different temperature zones. The MISOS model is used to simulate GSHP annual performance with a time step of about one hour 

and calculate the grout element temperature based on the element energy balance. Carli et al. [19] produced a capacity resistance 

model (CaRM) to analyse the working fluid temperature distributions for various BHE configurations where a local steady-state 

heat transfer is considered with the amended boundary conditions. Zarrella et al. [20] made an improvement on the model of 

double U-tubes by taking borehole thermal capacitance node into account based on electrical analogy. Their analysed results 

illustrate that thermal capacitance of the working fluid plays a significant role in the short time step simulation. Bozis et al. [21] 

developed a methodology to assess the effects of energy pile design alternatives, which is based on the implementation of line 

source theory to the EP specific geometry. They found that the temperature variation at the pile axis does not depend on the 

number of U-tubes and flow states under the constant heat rejection condition. Hu et al. [22] presented a composite cylindrical 

model on the basis of the combination of line source and cylindrical models, which can be used to estimate the transient heat 

transfer and temperature response over a short time period. They found that the distance between the pipe and BHE wall is a 

significant factor influencing heat transfer within the BHE.  
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Fig.1. Scheme diagram of EP elements  

Bauer et al. [23] produced 2D thermal resistance and capacity model (TRCM) for the coaxial, single and double U-tube boreholes 

to determine temperature distribution within the whole domain, the thermal resistances are related to the ratio of the pipe’s 

surface to the grout’s surface, one capacity node per tube is proposed by taking the fluid and grouting materials into account, 

however, the shank spacing influence has not yet been considered in this model. Huber et al. [24] improved the TRCM for the 

BHE short-time thermal behaviour simulation based on the electrical analogy. Pasquier et al. [25] presented an extended approach 

of approximation borehole components by supplementing some nodes to the grout area, which accounts for the fluid and pipe 

capacities as well as shack spacing. Most 2D BHE transient heat transfer models are based on the FEM and FDM. 2D models 

provide the detailed depiction of the BHE by thermal resistances, thermal properties of pipes and grout are considered, 

nevertheless, thermal interference or "thermal short-circulating" [26, 27] between two pipes of U-tube is neglected in 2D models.  

Al-Khoury et al. [28-30] proposed 3D numerical model depicting thermal interactions among the BHE elements including inlet-

pipe, outlet-pipe and grout. This model addresses the formulation equilibrium, the effect of thermal resistance and the FEM 

discretization. Nabi et al. [31, 32] also developed a computational model based on 3D FVM, which is used to simulate heat 

transfer and fluid flow in the shallow BHEs. Rees et al. and He [33, 34] set up a 3D BHE numerical model known as general 

elliptical multi-block solver to simulate transient heat transfers. By applying step changes in inlet parameters, simulation results 

display the delayed response associated with fluid flow along U-tube. The delay is significant when a system runs at peak load 

or the intermittence-controlled mode. Gashti et al. [35] proposed a 3D numerical heat transfer model based on finite element 

theory to analyse the performance of steel pile foundations by the Comsol Multiphysics package. Their study results show that 

the stabilised pile wall temperature is around 25–33% difference with the inlet fluid temperature, and there is a big fluctuation 

in pile shaft temperature near the tube curve at the EP end. Bnilam et al. [36] proposed a semi-analytical model for transient heat 
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flow with friction heat gain in a single U-tube BHE based on the spectral analysis and eigenfunction expansion method. In this 

study, the friction effect is regarded as a nonhomogeneous term in the partial differential equations. The developed spectral 

model can be utilized for other applications as well, such as narrow pipe flow, high velocity and viscosity flows. Lee [37] 

proposed a modified 3D numerical heat transfer model to analyse the impacts of grout thermal capacitance and fluid circulation 

period inside the U-tube. It is found that the fluid temperature changes sharply at the interface between the entering and existing 

fluids within the BHE. Moreover, the deviation in the simulated outlet fluid temperature of BHE between long-term and short-

term methods could be up to 3°C when a periodic intermittent load is considered. Dehkordi et al. [38] developed a tight BHE 

model for low shank spacing between the inlet and outlet pipes. The proposed model is used to estimate soil thermal conductivity 

and effective borehole thermal resistance. Their results show that the temperatures of the loop fluid and borehole wall are 

sensitive to the shank spacing and borehole diameter. It is found that the proximity of the pipes to borehole wall is more 

significant than the shank spacing in decreasing the total borehole resistance or temperature difference between loop fluid and 

borehole wall. Moreover, it is verified that a tight BHE could have rather low effective borehole thermal resistance and 

correspondingly achieve a high thermal efficiency. Yu et al. [39] developed a simplified heat transfer model to investigate 

thermal performance of large-scale BHE based on the geometric symmetry of borehole layout. Three case studies with various 

soil thermal conductivities (1.2, 1.6 and 2.0 W/m·K) are presented. In terms of each case study, both the soil thermal balance 

and imbalance are taken into account along with various BHE layouts. In addition, the relative error is defined as the ratio of the 

temperature difference (between the representative borehole and the original borehole) to the temperature excess of the 

representative borehole, and all errors are less than 7.71% for three cases with balanced seasonal load, and less than 0.56% for 

those with imbalanced annual load. 

3D models discretize the borehole components and working fluid along the pipe, and provide more accurate representation of 

heat transfer process. However, there are few mathematical models focusing on heat transfer in the shallow energy piles, which 

reflect the influence of “thermal short-circuiting”. Currently, there is a research gap to predict the multiple energy piles 

performance with consideration of “thermal short-circuiting” effect for the long-term operation period. The aim of this study is 

to develop a 3D transient heat transfer model of multiple energy piles to fill the above research gap, which is used for predicting 

the EP heat transfer rates and assessing thermal interactions under various flow rates and shank spacing. Equivalent geometry 

approximation is adopted to transform the EP U-tube from circular cross-section into rectangular one. Energy balance models in 

solid and fluid regions are developed separately; EP boundary conditions are proposed for various conjugated surfaces. In 

addition, the working fluid temperature variation along the pipe is analysed and the “thermal short-circuiting” heat loss rate is 

clarified. More than half a year experiment data have been used to verify the developed model, so the model could be used to 

evaluate long-term thermal performance of multiple energy piles. 
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2 Numerical models  

Heat transfer phenomena of EPs are complicated owing to three-dimension and unsteady state. Many factors such as the boundary 

condition, working fluid flow rate, soil property, etc. influence heat transfer characteristics. In order to develop a 3D transient 

heat transfer model, the simplified assumptions in this study are made as follows: 

1) The ground is regarded as a homogeneous medium with the mean thermal physical properties. 

2) The initial soil temperature is assumed as a function of depth. 

3) Heat transfer in the solid region is regarded as pure heat conduction and the effect of groundwater flow is negligible. 

4) A profile of velocity in U-tube pipe is uniform. 

Ground surface temperature would be directly affected by the solar radiation when the ground surface is fully exposed to outdoor 

environment. However, when the ground surface is covered by a building, all the radiations from nearby buildings and sky would 

be sheltered resulting in a low temperature fluctuation near the ground surface. Therefore, in this study, the ambient temperature 

is just used to represent the ground surface temperature [40, 41]. In terms of the working fluid flow region, energy formulations 

of the inlet and outlet pipes need to be setup separately because of the flow directions, and governing equations in the solid and 

fluid regions are derived based on the FVM.  

2.1 Single EP model 

2.1.1 Equivalent geometry approximation 

Heat transfer model is developed based on “equivalent pipe method”, the geometry transformation is illustrated in Fig. 2. U-tube 

circular cross-section is replaced by a rectangular one where the equivalent pipe sides are determined to ensure the equal heat 

transfer rate after transformation. The equivalent geometric dimensions are given as follow:  

1)  Equivalent pipe side 

Working fluid thermal capacities in the two regions are equal and given as: 

2

pi 2

f f f f i

πd
ρ c ρ c D

4
                                                                                                                                                                        (1) 

i pi

π
D d

2
                                                                                                                                                                                      (2) 

The same condition is applied for the pipes: 

2 2

po pi 2 2

p p p p o i

π(d d )
ρ c ρ c (D D )

4


                                                                                                                                                (3) 

2 2 2

o po pi i

π
D (d d ) D

4
                                                                                                                                                                    (4) 

To guarantee the equivalent fluid temperature gradient in the two regions, the following equivalence condition should be met. 
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2

pi 2

f f f f i

πd
μρ c μ 'ρ c D

4
                                                                                                                                                                    (5) 

Where ρf, ρp are the densities of working fluid and pipe material (kg/m3); cf, cp are the thermal capacities of working fluid and 

pipe material, (J/kg·K); Di , Do are the lengths of inner and outer equivalent sides (m); dpo ,dpi  are the pipe inner and outer 

diameters (m); μ, μ' are the working fluid velocities within the U-tube and equivalent pipe (m/s). 

To ensure the equivalence of heat transfer between the circular and rectangular regions, the thermal resistances between working 

fluid and grout in the two regions should be equal. The thermal resistance in the circular cross-section region is given by; 

c

po

pi p pi

1
R

d1 1
ln

hπd 2πk d





                                                                                                                                                               (6) 

The thermal resistance in the rectangular region is: 

i o

s

o i

s p

2(D D )
R

D D1

h 2k







                                                                                                                                                                          (7) 

Heat convection coefficient of the rectangular pipe is expressed as follows: 

s

poo i o i o i

c pi p pi p

1
h

d2(D D ) D D D D
ln

h πd πk d 2k


  

 

                                                                                                                                  (8) 

Where Rc, Rs are the thermal resistances of U-tube and square pipe (m·K/W); kp is the pipe thermal conductivity coefficient (W/ 

m· K); δ is the wall thickness of rectangular pipe (m); hc, hs are the heat convection coefficients of U-tube and square pipes (W/ 

m2·K); the subscripts f, p denote the fluid and pipe, respectively. 

2) Equivalent wall side 

To ensure the equivalent thermal capacity for the EP, the square pile area is given in Eq.9.  

2

2 2 2b

g g po g g b o

πd π
ρ c ( 2 d ) ρ c (l 2 D )

4 4
                                                                                                                                          (9) 

This equation can also be written as:  

2

2 2b

b po o

πd π
l d 2D

4 2
                                                                                                                                                                (10) 

Where db is the EP diameter (m); ρg is the density of grout (kg/m3); cg is the thermal capacity of grout (J/kg·K); lb is the side 

length of equivalent pile (m); the subscript g denotes the backfill material (grout). The center-to-center distance “∆d” between 

two pipes in the equivalent pile is the same as that in the rectangular pile. 
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Fig.2. Schematic diagrams of equivalent pipe method 

2.1.2 Energy balance in solid region 

For heat transfer analysis, the EP is classified into two regions; solid region and fluid region.  The solid region includes soil, 

grout and pipe, where heat transfer is regarded as three-dimensional transient heat conduction. The soil is divided into one 

hundred (100) layers in the vertical direction in order to interpret the effect of fluid temperature variation. Therefore, the energy 

balance equation of the soil domain is given as: 

s s s s

soil soil soil soil soil

T T T T
ρ c (k ) (k ) (k )

t x x y y z z

     
  

      
                                                                                                           (11) 

Grout as heat transfer medium in energy pile has high thermal conductivity and storage capacity. Hence, energy balance equation 

of the backfill material (grout) domain is given as:  

g g g g

grout grout grout grout grout

T T T T
ρ c (k ) (k ) (k )

t x x y y z z

     
  

      
                                                                                                  (12) 

Heat transfer through the pipe is treated as pure heat conduction as well, and defined as 3D heat conduction versus time. Thus, 

the corresponding energy conservation equation can be written as: 

p p p p

pipe pipe pipe pipe pipe

T T T T
ρ c (k ) (k ) (k )

t x x y y z z

     
  

      
                                                                                                      (13) 

Where ρsoil, ρgrout and ρpipe are the densities of soil, grout and pipe (kg/m3); csoil, cgrout  and cpipe are the thermal capacities of soil, 

grout and pipe (J/kg·K); ksoil, kgrout  and kpipe are the thermal conductivities of soil, grout and pipe (W/m·K); Ts , Tg and Tp are the 

temperatures of soil, grout and pipe (°C ) respectively. 

2.1.3 Energy balance in fluid region 
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In the fluid region, heat convection occurs between the rectangular pipe and working fluid. The fluid flow direction of inlet pipe 

is opposite to the direction of outlet pipe. Therefore, the energy balance equations of inlet pipe and outlet pipe need to be 

developed separately. Furthermore, the bottom connecting section is considered, where the average temperature of the upward 

flow fluid is equal to that of the downward flow fluid though the fluid velocities are equal V1= (-)V2=(-)V. The simplified 

modelling process is presented in Fig.3.  

 

Fig.3. Graphical scheme of modelling fluid in the pipe loop 

The fluid in the inlet pipe (downward flow) can be modelled as follows:  

2

inlet inlet inlet

fluid fluid f fluid ig grout inlet2

T T T
ρ c (ρcv) k b (T T )

t z z

  
   

  
                                                                                                    (14) 

Similarly, the fluid in the outlet pipe (upward flow) is also modelled as: 

2

outlet outlet outlet

fluid fluid f fluid og grout outlet2

T T T
ρ c (ρcv) k b (T T )

t z z

  
   

  
                                                                                             (15)  

The left sides of Eqs. (14) and (15) denote the volumes of the specific components, and the right sides denote the contact surface 

regions for the interacting surfaces. Based on the simple model presented by Al-Khoury et al. [28-30], heat transfer coefficients 

of U-tube can be written as  

ig

ig

1
b

R
 , og

og

1
b

R
                                                                                                                                                                     (16) 

0
0

i

ig convection pipe

0 pipe

i

D
D ln( )

D1
R R R

D / 2 k

D / 2 h

   



                                                                                                                            (17) 
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Where big is the reciprocal of thermal resistance Rig between inlet pipe and grout (W/m2·K); bog is the reciprocal of thermal 

resistance Rog between outlet pipe and grout (W/m2·K); h is the convective heat transfer coefficient between working fluid and 

pipe material (W/m2·K). 

2.2 Multiple EP model  

The main problem with single energy pile is that it has limited heat transfer capacity thereby transferring limited heat to the 

building. In order to meet building energy requirement, the EP system is normally designed with multiple piles. The multiple 

energy piles model is shown in Fig.4. The red and blue regions represent the inlet and outlet pipes respectively whereas the green 

and gray regions indicate the grout and soil domains. The overall analysis region is defined by the isothermal boundary. The 

spatial coordinate is discretized and divided into two rectangular coordinate systems; horizontal (X-Y) and vertical (X-Z). At the 

horizontal level, more meshes are generated for the region adjacent to pile where the temperature gradient is larger, while fewer 

meshes are for far field boundary region where the temperature gradient is smaller. The equivalent grids are adopted in vertical 

direction.     

 

Fig.4. Schematic representation of discretised model: (a) 3D multiple EPs model (b) 3D single EP model (c) Top discretised 

cross-section of single model (d) Top discretised cross-section of multiple model (e) Arbitrary cube cell 

The simulated region is discretized as a finite number of contiguous non-overlapping cell cubes. The computational nodes are 

located at the centre of each cell cube. The black cube (P point) in Fig.4 (e) is regarded as the control volume and its six 

neighboring nodes are identified as west, east, south, north, top and bottom in which the corresponding cell faces are denoted by 
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w, e, s, n, ť and b respectively. The governing equation is discretized through fully implicit approach whereby each pile is 

composed of a series of cubes in three different directions (x, y and z). In a cube cell with a nodal point P (φ, ω, j) at the centre, 

φ, ω, j denote a nodal point in direction of x axis, y axis and z axis, respectively.  

Integration of Eq. (11)-(13) over the control volume and a time interval from t to t+Δt gives 

t Δt t Δt t Δt t Δt

e w n s t ' b

CV t t t t

T T T T T T T
[ ρc dt]dV [(kA ) (kA ) ] [(kA ) (kA ) ] [(kA ) (kA ) ]

t x x y y z z

   
      

     
                                                            (18) 

Where, A is the face area of the control volume, CV is its control volume. Thereby, the left hand side of the volume integral of 

the temporal derivative can be written as 

t Δt

0

P P

CV t

T
[ ρc dt]dV ρc(T T )ΔV

t




 
                                                                                                       (19) 

Where, 0

P P

T 1
(T T )

t Δt


 


, this term has been discretised by a first-order (backward) differencing scheme, in which 0

PT  is the 

value of T at time t and TP is the value at time t+Δt, with Δt is the same time step, ΔV=dxdydz. 

The fully implicit discretisation method is applied to this proposed model, thereby the value of ε is set equal to 1. 

t Δt

0

T p p p

t

I T dt [εT (1 ε)T ]Δt



                                                                                                              (20) 

Similarly, the fully implicit discretisation method for diffusion problems in Eq. (14) and (15) is also adopted.  

The discretized equations of an internal node are given as: 

Θ(φ,ω, j) Γ(φ,ω, j, t 1)    

w eΘ (φ,ω, j) Γ(φ 1,ω, j, t 1) Θ (φ,ω, j) Γ(φ 1,ω, j, t 1)        

s nΘ (φ,ω, j) Γ(φ,ω 1, j, t 1) Θ (φ,ω, j) Γ(φ,ω 1, j, t 1)         

b t 'Θ (φ,ω, j) Γ(φ,ω, j 1, t 1) Θ (φ,n, j) Γ(φ,ω, j 1, t 1)         

0Θ (φ,ω, j) Γ(φ,ω, j, t)                                                                                                                                                              (21) 

Where, Γ is temperature node of cell cube and the superscript “0” refers to the state at the initial time step. The corresponding 

coefficients (Θ) are expressed as: 

w ω j

w

w

k Δy Δz
Θ (φ,ω, j)

(δx)

 
 , 

e ω j

e

e

k Δy Δz
Θ (φ,ω, j)

(δx)

 
 , 

s φ j

s

s

k Δx Δz
Θ (φ,ω, j)

(δy)

 
  

n φ j

n

n

k Δx Δz
Θ (φ,ω, j)

(δy)

 
 , 

b φ ω

b

b

k Δx Δy
Θ (φ,ω, j)

(δz)

 
 , 

t φ ω

t

t '

k Δx Δy
Θ (φ,ω, j)

(δz)

 
  
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φ ω j0
c ρ Δx Δy Δz

Θ (φ,ω, j)
Δt

   


0

w e s n b t 'Θ(φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j) Θ (φ,ω, j)        

3 Boundary and initial conditions 

3.1 Boundary conditions 

Boundary conditions are classified into two categories: first and second boundary conditions. The first boundary condition is 

expressed in terms of temperature at the boundary while the second is expressed in terms of temperature gradient.  In the case of 

the first boundary condition, at z = 0, the inlet pipe temperature is equal to the fluid temperature i.e.; 

inlet fluidT (0, t) T (t)                                                                                                                                                                      (22) 

In terms of the second boundary condition, at z = 0, heat flux at the exit of outlet pipe is depicted as: 

outletT (0, t)
0

z





                                                                                                                                                                            (23) 

For the conjugated surface between fluid and pipe: 

Inlet pipe:                                                                             

pipe i i i i i i

pipeinlet inner

s f1 Δd D D D pipe Δd D D D
x , y x , y

2 2 2 2 2 2

T
h [T T (x, y)] k

x
 

       


 


                                                                                           (24) 

pipe i i i Δd D Δd D Di i ix ,y
2 2 2

pipeinlet inner

s f1 Δd D Δd D D pipe
x ,y

2 2 2

T
h [T T (x, y)] k

y  
   

 
   


 


                                                                                        (25) 

Outlet pipe: 

pipe i i i i i i

pipeoutlet inner

s f 2 Δd D D D pipe Δd D D D
x , y x , y

2 2 2 2 2 2

T
h [T T (x, y)] k

x
 

       


 


                                                                                           (26) 

pipe i i i Δd D Δd D Di i ix ,y
2 2 2

pipeoutlet inner

s f 2 Δd D Δd D D pipe
x ,y

2 2 2

T
h [T T (x, y)] k

y  
   

 
   


 


                                                                                        (27) 

For the conjugated surface between pipe and grout: 

Inlet pipe: 

o o o o o o

pipe borehole

pipe Δd D D D borehole Δd D D D
x , y x , y

2 2 2 2 2 2

T T
k k

x x
 

       

 


 
                                                                                                  (28) 

o o o o o opipe Δd D D D borehole Δd D D D
x , y x , y

2 2 2 2 2 2

T T 
       

                                                                                                                           (29) 
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o o o o o o

pipe borehole
pipe Δd D D D borehole Δd D D D

x , y x , y
2 2 2 2 2 2

T T
k k

y y
 

       

 


 
                                                                                           (30) 

o o o o o opipe Δd D Δd D D borehole Δd D Δd D D
x ,y x ,y

2 2 2 2 2 2

T T   
       

                                                                                                               (31) 

Outlet pipe: 

o o o o o o

pipe borehole

pipe Δd D D D borehole Δd D D D
x , y x , y

2 2 2 2 2 2

T T
k k

x x
 

       

 


 
                                                                                                    (32) 

o o o o o opipe Δd D D D borehole Δd D D D
x , y x , y

2 2 2 2 2 2

T T 
       

                                                                                                                             (33) 

o o o o o o

pipe borehole

pipe Δd D Δd D D borehole Δd D Δd D D
x ,y x ,y

2 2 2 2 2 2

T T
k k

y y
   

       

 


 
                                                                                      (34) 

o o o o o opipe Δd D Δd D D borehole Δd D Δd D D
x ,y x ,y

2 2 2 2 2 2

T T   
       

                                                                                                              (35) 

For the conjugated surface between grout and soil: 

b b b b b b

borehole soil

borehole l l l soil l l l
x , y x , y

2 2 2 2 2 2

T T
k k

x x       

 


 
                                                                                                                  (36) 

o o o o o oborehole Δd D D D soil Δd D D D
x , y x , y

2 2 2 2 2 2

T T 
       

                                                                                                                               (37) 

b b b b b b

borehole soil

borehole l l l soil l l l
x ,y x ,y

2 2 2 2 2 2

T T
k k

x y       

 


 
                                                                                                                  (38) 

b b b b b bborehole l l l soil l l l
x ,y x ,y

2 2 2 2 2 2

T T
       

                                                                                                                                         (39) 

For the conjugated surface at the bottom of soil domain:                                                                                                                    

soil

soil

z L 3

T
k 0

z
 





                                                                                                                                                                      (40) 

For the bottom connecting section between inlet and outlet pipes: 

f1 f 2T (z L, t) T (z L, t)                                                                                                                                                           (41) 

 For the ground surface boundary condition: 
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borehole

borehole air air borehole z 0

z 0

T
k h [T T ]

z 




  


                                                                                                                                  (42) 

soil

soil air air soil z 0

z 0

T
k h [T T ]

z 




  


                                                                                                                                              (43) 

Where Tpipe, Tborehole, Tsoil are the temperatures of pipe, borehole and soil (°C); Tf1, Tf2 are the working fluid temperatures within 

the inlet and outlet pipes; L is the EP depth (m); hair is the heat convection coefficient between ambient air and ground surface 

(W/m·K); Tair is the ambient air temperature (°C). 

3.2 Initial conditions 

At the start point (t=0), the temperatures of working fluid, pipe, grout and soil are equal in the system. The initial state is shown 

as follows: 

Tfluid(z,t)=Tpipe (x,y,z,t)=Tgrout(x,y,z,t)=Tsoil(x,y,z,t)     (t=0)                                                                                                         (44) 

Where, Tfluid(z,t) is the fluid temperature (°C); Tpipe (x,y,z,t) is the pipe temperature (°C);  Tgrout(x,y,z,t) is the grout temperature 

(°C); Tsoil(x,y,z,t) is the soil temperature (°C).   These initial conditions are listed in Table 1. 

Soil surface temperature Tsoil(x,y,z,0) is treated as the undisturbed ground temperature. The ground temperature is a sinusoidal 

wave function of time and depth [42-44], and shown as below: 

soil year mean amp year shift

π 2π Z 365
T (Z, t ) T T exp( Z ) cos[ (t t )]

365 365 2 π α
         


                                                                           (45) 

Where Tsoil (Z, tyear) is the undisturbed ground temperature at time (t) and depth (Z) (°C); Tmean is the mean surface temperature 

(average air temperature) (°C); Tamp is the amplitude of surface temperature [(maximum air temperature – minimum air 

temperature)/2] (°C); Z is the depth below the surface (surface=0) (m); α is the thermal conductivity of soil (J/kg ·K); tyear is the 

current time (day); tshift is the day of the year when the coldest air temperature occurs.  

Table 1 Initial conditions and geometrical parameters 

Description Value 

Pipe outside diameter (dpo) 0.032 m 

Pipe inside diameter (dpi) 0.013 m 

Shank spacing (∆d) 0.06 m 

EP diameter (DBorehole) 0.3 m 

EP depth (H) 10 m 

Initial ground surface temperature (Tsurface) 10.4 °C 

Soil body temperature (soil far field boundary) (Tsoil body) 15.0 °C 

Soil bottom temperature (soil far field boundary) 

(Tsoil bottom ) 
15.5 °C 

Fluid Inlet Temperature (Tfl,in) 1.2 °C  
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4 Methodology 

The solution flowchart for the developed model is shown in Fig.5. The basic geometrical parameters, initial and boundary 

conditions are the main input data. The process begins with the equivalent model given by Eqs. (1)-(10). The iterative time is 

initiated with a value of ∆t. The nodal temperatures in the equivalent cube are calculated at each step until the time required for 

the fluid to flow through the pile heat exchanger is reached. The related parameters including temperature and heat transfer rate 

are obtained in the process. After that, the program will stop and output the simulation data if the results meet the precision 

requirement, otherwise the time t will be iterated (t=t+∆t) and the simulation process starts again. In this study, the simulation is 

carried out by an Intel 2 Duo 3 GHz processor with 64 bit operation system, one step calculation would take approximately 25s 

for proposed model compared with typical 3D CFD model which require around 75s, a significant decrease of computational 

time with a good precision makes the proposed 3D model extremely useful.  
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Fig.5. Flowchart of the computational procedure 
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5 Results and discussion 

Experimental results obtained from the facility near Birmingham, UK, are used to validate the numerical model, and the impacts 

of main parameters on the EP system performance are analyzed. The experimental multiple EPs were installed by Roger Bullivant 

Ltd [1, 27], as shown in Fig.6.  

 

Fig.6. The schematic diagram of pile and thermocouple array layout 

The total number of piles set up is 21, which would be essential for the foundation requirement of a dwelling. However, only the 

perimeter 16 piles are utilized for heat exchange with soil. A number of K type thermocouples are adopted in the experimental 

system, each pile has a thermocouple located at the pile end. Moreover, thermocouples are also placed at locations C, D and E 

diagonally towards pile 11 to get ground temperatures. Data Taker DT505 is used to record the data output from these 

thermocouples. Turbine Hall Effect meters and platinum RTD PT100 probes are used to measure the working fluid flow rates 

and temperatures respectively [1, 27]. Table 2 lists the EP thermal properties in the experimental system. 

Table 2 Thermal and physical properties used in the experimental system 

Description Value 

Fluid (mixture of glycol and water)  

Density (ρfl ) 1035 kg/m3 

Kinematic viscosity (νfl) 4.94x10-6 m2/s 

Heat capacity (Cp,fl) 3795 J/(kg ·K) 

Thermal conductivity (kfl) 0.58 W/(m·K) 

Pipe(High density polyethylene)  

Density (ρp) 950 kg/m3 

Heat capacity (Cpl) 2300 J/(kg ·K) 

Thermal conductivity (kp) 0.45 W/(m ·K) 

Filling (Grout)  

Density (ρg) 1860 kg/m3 

Heat capacity (Cg) 840 J/(kg ·K) 
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Thermal conductivity (kg) 2 W/(m ·K) 

Soil  

Depth  Thermal conductivity Density 

Mixed gravel and coarse sand 0 m to 2.22 m 1.30 W/(m·K) 2277 kg/m3 

Sand gravel 2.22 m to 3.3m 1.15 W/(m·K) 2094 kg/m3 

Gravelly clay 3.3m to 5.5 m 1.68 W/(m·K) 2223 kg/m3 

Gravelly clay 5.5m to 10 m 1.75 W/(m·K) 2392 kg/m3 

Weighted mean 1.50 W/(m·K) 2260 kg/m3 

 

The numerical results are compared with the experimental data in order to validate the 3D model, the errors between them are 

obtained by the following equation. 

numerical experiment

numerical

T T
Error

T


                                                                                                                                                          (46) 

The errors for the working fluid, pile and soil temperatures in this study are summarized in Table 3, it can be seen that the 

maximum error is 14.5% noticed in pile 13, all average errors are blow 8%, therefore the developed model is effectively 

supported by the experimental data, the detail error analyses are addressed in the following three subsections. 

Table 3 Relative errors between 3D numerical and experimental results 

 

5.1 Outlet fluid temperatures  

The average outlet fluid temperatures are shown in Fig. 7 with the initial inlet fluid temperature of 1.2 °C and a flow rate of 

0.38m3/h. The inlet fluid temperature is lower than the outlet fluid’s, so the soil is a “heat source” in this operation mode. Fig. 7 

demonstrates that the experimental and simulation results are in good agreement. As shown in Fig.7, the outlet fluid temperatures 
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at the beginning of operation stage are different from the experimental results. This is because the input initial soil temperature 

is higher than the experimental data, which results in the high outlet fluid temperature from the simulation program. It is observed 

that the fluid temperature difference between inlet and outlet is around 6 °C at the initial stage while the temperature difference 

is only 4°C after 250 hours. The maximum fluid outlet temperature difference between the experimental and simulated results 

appears at the beginning, reaching 8.8%. Thereby, the proposed model is able to be applied for short timescale response. 

Moreover, the mean error for the working fluid outlet temperature is 2.9%. The difference could be caused by the simplified 

assumptions in numerical model.  

 

Fig.7. Fluid inlet and outlet temperatures  

5.2 Pile temperatures 

The pile temperatures at a depth of 10m are shown in Fig. 8 decreasing from the beginning to the end of operation. At the end 

of operation, the highest pile temperature is obtained from pile 10 (referring to Fig. 6) while the lowest pile temperature is from 

pile 13. The pile temperatures obtained from the simulation indicate similar variation patterns as the experimental data over the 

whole operation period, the maximum errors are 13.3%, 11.3%, 9.6% and 14.5% for piles 10-13, respectively, the maximum 

errors occurred around the middle of the operation time for piles 10, 11 and 13 while it happened at the end of the operation time 

for pile 12. The mean errors for piles 10-13 are 7.3%, 7.7%, 6.9% and 7.7% respectively. These data further verify the developed 

model. Notably, pile temperature variation may have influence on the foundation as a structural support because extra stress is 

generated within the pile due to temperature variation, so that the structural design of EP has to be taken into account. The ground 

thermal energy storage capacity between the piles increases with the pile spacing, which would enhance the pile heat extraction 

rate owing to more available heat source. Otherwise the pile heat transfer rate would decreases when the pile space is reduced. 

As for the EP depth influence on its heat exchange rate, it is possible to perform better heat exchange between the working fluid 

and surrounding soil. However, the initial cost is higher.  
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Fig.8. Pile temperatures 

5.3 Soil temperatures 

The soil is typically stratified along the pile with various materials including sand, clay, rock and so on. An array of 

thermocouples was located away from the piles 11 (such as at location C, D and E) at depths of 10m to measure ground 

temperatures as shown in Fig. 6. The soil temperatures at the locations C, D and E are shown in Fig. 9 in which the simulation 

results show similar trends as the experimental data.  

 

Fig.9. Soil temperatures at locations C, D and E 

The soil at location E has greater temperature variation compared with that at location D, meaning that it is more readily affected 

by heat extraction. The soil temperature variations at location C, farthest from the plot and diagonally towards pile 11, are lower 

compared with that at the locations D and E. This demonstrates that location C is thermally undisturbed by the energy pile plot 

or the effect is almost negligible. As indicated in Fig.9, the maximum soil temperature differences between the experimental and 

simulation results at the locations “C”, “D” and “E” are 7.3%, 2.9% and 5.1% respectively, and these happened at the operation 
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times of 2400h, 1800h and 3720h correspondingly, the mean soil temperature errors at these locations are 3.6%, 1.1% and 3.2%, 

respectively. These deviations could be due to the simplified assumptions in the mathematical model for example, the influence 

of groundwater flow is not considered in the 3D numerical model.  

5.4 Effects of fluid flow rate 

Fluid flow rate has a significant impact on the fluid outlet temperature and heat transfer rate of the EP system. The low flow rate 

could provide high temperature fluid for heat pump evaporator in the heating mode, but heat transfer rate is low due to low 

convective heat transfer between the fluid and U-tube. High flow rate could increase heat transfer rate but the fluid outlet 

temperature will remain low. In addition, high fluid flow rate also leads to more power consumption for the circulating pump. 

As a consequence, one issue in this study is to maintain the working fluid flow rate within a reasonable range. In order to address 

the impact of flow rate, the inlet fluid temperature is defined as -4 °C, this is because “-4 °C” is regarded as the critical temperature 

of soil freezing. 30 days are used as the elapsed time in the simulation process. In addition, various flow rates, namely, 0.1m3/h, 

0.3m3/h, 0.5m3/h, 0.7m3/h, 0.9m3/h and 1.2m3/h are simulated, and correspondingly the outlet fluid temperatures and heat transfer 

rates are displayed in Fig. 10.  

 

Fig.10. Influences of fluid flow rate 

It is found that the flow rate has less effect on the heat transfer rate over a certain level. At low flow rate, convective heat transfer 

between the working fluid and pipe is the main thermal resistance in the EP. The convective coefficient can be enhanced by 

increasing flow rate. When flow rate is increased to a certain level, the convective heat transfer has less influence on the whole 

heat transfer process so that the overall heat transfer rate has a low increase trend with flow rate. The fluid temperature variations 

in the U-tube are shown in Fig.11. Specifically, the outlet temperatures are -0.15°C and -0.81 °C for the flow rates of 0.1m3/h 

and 1.2m3/h with the corresponding fluid temperature increments of 3.85°C and 3.19°C respectively. It is found that the fluid 
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outlet temperature is not the maximum one, which indicates there is heat loss in the U-tube even though under heat extraction 

mode. The loss is caused by heat exchange between two pipes of the U-tube, which is “thermal short-circuiting”. 

 

Fig.11. Fluid temperature distribution in the U-tube 

As shown in Fig. 11, the fluid temperature within the inlet pipe always increases along the pipe whereas its temperature within 

the outlet pipe increases slowly at first, and then decreases due to the impact of “thermal short-circuiting”. The highest fluid 

temperature occurs at the middle of the outlet pipe for example, it is 0.49 °C when the flow rate is 0.1m3/h. The maximum 

temperature difference between inlet and outlet is 4.49 °C at the moment though the fluid outlet temperature is -0.15 °C implying 

that the actual temperature difference between inlet and outlet is 3.85 °C. Therefore the short-circuiting loss rate is 14.3% [(4.49-

3.85) / 4.49 =14.3%]. Similarly, the short-circuiting effects at various flow rates are presented in Table 4 where it is indicated 

that the influence would be more serious at low flow rate due to the big temperature difference between inlet and outlet. Therefore, 

the effect of “thermal short-circuiting” should be given full consideration in practical application. 

Table 4 Thermal short-circuiting loss 

Flow rate (m3/h) 0.1 0.3 0.5 0.7 0.9 1.2 

Inlet temperature (°C) -4 -4 -4 -4 -4 -4 

Outlet temperature (°C) -0.15 -0.24 -0.39 -0.65 -0.74 -0.81 

Maximum temperature 

(°C) 
0.49 0.35 0.11 -0.30 -0.41 -0.55 

Temperature difference 

between inlet and outlet 

(°C) 

3.85 3.76 3.61 3.34 3.26 3.19 

Maximum temperature 

difference (°C) 
4.49 4.35 4.12 3.70 3.59 3.45 

Short circuiting loss rate 

(%) 
14.3 13.5 12.3 9.6 9.2 7.5 

To sum up, low flow rate is able to provide high temperature fluid to increase EP efficiency by enhancing the evaporative 

temperature, but in the meantime it has low heat transfer rate and high “thermal short-circuiting” loss. As for high flow rate, it 

has high heat transfer rate and low short-circuiting heat loss, but it provides low temperature fluid for heat pump. Therefore, in 
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this study, the fluid flow rate should be controlled in the range of 0.5m3/h to 0.7m3/h. The influence of the working fluid flow 

rate is also investigated in the literature [45], the fluid flow velocity within a U-tube pipe with internal diameter of 0.026m should 

be in the range from 0.3m/s to 0.4m/s, correspondingly the flow rate range is 0.57m3/h to 0.76m3/h, which is nearly consistent 

with the above suggested flow rate range. 

5.5 Effects of U-tube shank spacing 

The inlet and outlet pipes are so close that unavoidably causes “thermal short-circuiting”. Hence, it is essential to address the 

effect of shank spacing on thermal behaviour of the EP. The working fluid temperatures at different shank spacing, namely 0m, 

0.02 m, 0.04 m, 0.06 m, 0.08 m and 0.10 m, are shown in Fig.12 with a flow rate of 0.5m3/h. It is found that the outlet fluid 

temperature increases with shank spacing. The fluid temperature within the outlet pipe increases at first when the two pipes are 

very close to each other, and then decreases due to the heat loss caused by “thermal short-circuiting”. The effect of “thermal 

short-circuiting” is most serious when the two pipes are in contact with each other and its influence decreases with shank spacing. 

 

                                             (a) Shank spacing: zero                                            (b) Shank spacing: 0.02m 

 

                                           (c) Shank spacing: 0.04m                                            (d) Shank spacing: 0.06m 
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                                             (e) Shank spacing: 0.08m                                         (f) Shank spacing: 0.10m 

Fig.12. Outlet fluid temperature variation with shank spacing 

The influence of shank spacing on heat transfer rate is shown in Fig.13. It can be seen that heat transfer rate increases gradually 

with shank spacing while its increasing rate decreases progressively. The shank spacing has less influence when it is larger than 

0.06m. This is because thermal resistance between inlet and outlet pipes increases gradually with shank spacing. Therefore heat 

exchange between two pipes decreases so that the influence caused by “thermal short-circuiting” becomes less accordingly. 

Hence, it is possible to reduce the influence of “thermal short-circuiting” by means of increasing the distance between two pipes 

of U-tube. However the shank spacing is limited by the EP dimension, the maximum value of which is 0.1m in this study. 0.072m 

shank spacing is adopted in the literature [46] to analyse heat transfer efficiency in an EP foundation, where a U-tube pipe with 

internal diameter of 0.02 m and external diameter of 0.028m is installed. 0.098m shank spacing is used in the literature [47] to 

test the EP thermal response, the EP diameter is 0.3m with a 0.032m diameter pipe installed. These data approve the above shank 

spacing analysis results. 

 

Fig.13. Influences of shank spacing on heat transfer rate 
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6. Conclusions 

A three-dimensional transient heat transfer model is developed to investigate thermal properties of multiple energy piles, which 

is based on the finite volume method. The normal circular cross-section EP region is replaced by an equivalent rectangular 

geometry with full interpretation of heat transfer process within the EP system. Energy balance models in solid and fluid regions 

are set up separately; EP boundary conditions are established for various conjugated surfaces. The numerical model is compiled 

and validated by experimental data in respect of outlet fluid, pile and soil temperatures. The influences of “thermal short-

circuiting” between the two pipes of U-tube in the EP on the outlet fluid temperature and heat transfer rate are investigated, the 

effects of the working fluid flow rate are examined as well. In order to avoid low outlet fluid temperature and reduce the effect 

of “thermal short-circuiting”, the fluid flow rate should be controlled in the range of 0.5m3/h to 0.7m3/h in this study. Heat 

transfer between two pipes of U-tube is analysed with different U-tube shank spacing, and it is found that heat transfer rate per 

unit depth increases gradually with the distance between two pipes but the increasing rate of heat transfer reduces progressively. 

To reduce the impact of “thermal short-circuiting”, the shank spacing should be set in a range of 0.06m to 0.10m in this study. 

Even though small errors involved in the fluid outlet, pile and soil temperatures exist, it can be concluded that the numerical 

approach is capable of coupling the soil temperature to the working fluid temperature. The developed 3D mathematical model 

is validated by the experimental data, and the model can be used to explore the EP performance further. Therefore, a case study 

of GSHP system using energy piles is the future research work to assess the system energy performance for whole year period. 

Nomenclature 

A            area (m2) 

A0           temperature amplitude at the soil surface (°C) 

c            thermal capacity (J/kg·K) 

D            pipe diameter (m) 

Dh                hydraulic diameter (m) 

g            g-function 

H           borehole depth (m) 

h            heat transfer coefficient [W/(m·K)] 

i,j,k        node number in the x-axis, y-axis and z-axis 

li,lo        inner and outer edge lengths of rectangular pipe  (m) 

lb           edge length of rectangular pipe (m) 
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k          thermal conductivity [W/(m·K)] 

r            radius (m)  

R          thermal resistance (m·K /W) 

T           temperature (°C) 

T0          ground far field temperature (°C) 

t            time (s) 

Subscripts 

ave                average 

b                    borehole 

cond              conduction 

conv              convection 

f                    fluid 

grout            grout 

i                    inside 

o                  outside 

s                   soil 

w                  wall  

w,e,s,n,b,t    west, east, south, north, bottom, top 

Greek Letters 

α                ground thermal conductivity (J/kg ·K) 

∆d             distance between centre to centre (m)  

∆t              iterative time (s) 

∆x, ∆y, ∆z space interval at different direction  

ρ               density (kg/m3) 

µ, µ’        fluid velocities in the U-tube and square pipes (m/s) 

Abbreviations 
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BHE               borehole heat exchanger 

CaRM            capacity resistance model 

FDM              finite difference method 

FEM              finite element method 

FVM              finite volume method 

GSHP             ground source heat pump 

TRCM            thermal resistance capacity model  

1D                  one-dimensional 

2D                  two-dimensional 

3D                  three-dimensional 
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