272 research outputs found
Intrinsic limits governing MBE growth of Ga-assisted GaAs nanowires on Si(111)
Diffusion-enhanced and desorption-limited growth regimes of Ga-assisted GaAs
nanowires were identified. In the latter regime, the number of vertical NWs
with a narrow length distribution was increased by raising the growth
temperature. The maximum axial growth rate; which can be quantified by the
supplied rate of As atoms, is achieved when a dynamical equilibrium state is
maintained in Ga droplets i.e. the number of impinging As atoms on the droplet
surface is equivalent to that of direct deposited Ga atoms combining with the
diffusing ones. The contribution of Ga diffusion to the wire growth was
evidenced by the diameter-dependent NW axial growth rate
On Eigenvalue spacings for the 1-D Anderson model with singular site distribution
We study eigenvalue spacings and local eigenvalue statistics for 1D lattice
Schrodinger operators with Holder regular potential, obtaining a version of
Minami's inequality and Poisson statistics for the local eigenvalue spacings.
The main additional new input are regular properties of the Furstenberg
measures and the density of states obtained in some of the author's earlier
work.Comment: 13 page
Overdoped Cuprates With High Temperature Superconducting Transitions
Evidence for High Tc cuprate superconductivity is found in a region of the
phase diagram where non-superconducting Fermi liquid metals are expected. Cu
valences estimated independently from both x-ray absorption near-edge structure
(XANES) and bond valence sum (BVS) measurements are > 2.3 for structures in the
homologous series (Cu0.75Mo0.25)Sr2(Y,Ce)sCu2O5+2s+{\delta} with s = 1, 2, 3,
and 4. The s = 1 member, (Cu0.75Mo0.25)Sr2YCu2O7+{\delta}, 0 \leq {\delta} \leq
0.5, is structurally related to YBa2Cu3O7 in which 25% of the basal Cu cations
[i.e. those in the chain layer] are replaced by Mo, and the Ba cations are
replaced by Sr. After oxidation under high pressure the s = 1 member becomes
superconducting with Tc = 88K. The Cu valence is estimated to be ~2.5, well
beyond the ~2.3 value for which other High-Tc cuprates are considered to be
overdoped Fermi liquids. The increase in valence is attributed to the
additional 0.5 oxygen ions added per chain upon oxidation. The record short
apical oxygen distance, at odds with current theory, suggests the possibility
of a new pairing mechanism but further experiments are urgently needed to
obtain more direct evidence. From the structural point of view the members with
s \geq 2 are considered to be equivalent to single-layer cuprates. All have Tc
~ 56 K which is significantly higher than expected because they also have
higher than expected Cu valences. The XANES-determined valences normalized to
give values in the CuO2 layers are 2.24, 2.25, and 2.26 for s = 2, 3, and 4,
while the BVS values determined for the valence in the CuO2 layer alone are
2.31-2.34 for the s = 2 and 3 members. No evidence for periodic ordering has
been detected by electron diffraction and high resolution imaging studies. The
possibility that the charge reservoir layers are able to screen long range
coulomb interactions and thus enhance Tc is discussed
Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short and mid-wavelength infrared regions
This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells
grown on bulk GaN for intersubband optoelectronics in the short- and
mid-wavelength infrared ranges. The characterization results are compared to
those for reference samples grown on the polar c-plane, and are verified by
self-consistent Schr\"odinger-Poisson calculations. The best results in terms
of mosaicity, surface roughness, photoluminescence linewidth and intensity, as
well as intersubband absorption are obtained from m-plane structures, which
display room-temperature intersubband absorption in the range from 1.5 to 2.9
um. Based on these results, a series of m-plane GaN/AlGaN multi-quantum-wells
were designed to determine the accessible spectral range in the mid-infrared.
These samples exhibit tunable room-temperature intersubband absorption from 4.0
to 5.8 um, the long-wavelength limit being set by the absorption associated
with the second order of the Reststrahlen band in the GaN substrates
Subnanosecond spectral diffusion of a single quantum dot in a nanowire
We have studied spectral diffusion of the photoluminescence of a single CdSe
quantum dot inserted in a ZnSe nanowire. We have measured the characteristic
diffusion time as a function of pumping power and temperature using a recently
developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)]
that offers subnanosecond resolution. These data are consistent with a model
where only a \emph{single} carrier wanders around in traps located in the
vicinity of the quantum dot
High-Tc Superconducting Cuprates, (Ce,Y)sO2s-2Sr2(Cu2.75Mo0.25 )O6+[delta] : Tc-increase with apical Cu-O decrease at constant Cu-O planar distance
Evidence for high-Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both XANES measurements and bond valence sum calculations are greater than 2.25 and are in close agreement with each other for structures of the homologous series given in the title with s = 1, 2, 3, 4 and 5. Two questions arise from the present perspective: 1) Is all the action in the CuO2 layers? 2) Is there superconductivity beyond the usual dome? The record short apical oxygen distance found in the homologous series especially in the s = 1 member, at odds with the current theory, suggests the possibility of a new pairing mechanism. The apical Cu-O distance in the s = 1 member decreases upon oxygenation from 2.29 to 2.15 dot A while the Cu valence increases to 2.45 dot A.Peer reviewe
Weak Disorder in Fibonacci Sequences
We study how weak disorder affects the growth of the Fibonacci series. We
introduce a family of stochastic sequences that grow by the normal Fibonacci
recursion with probability 1-epsilon, but follow a different recursion rule
with a small probability epsilon. We focus on the weak disorder limit and
obtain the Lyapunov exponent, that characterizes the typical growth of the
sequence elements, using perturbation theory. The limiting distribution for the
ratio of consecutive sequence elements is obtained as well. A number of
variations to the basic Fibonacci recursion including shift, doubling, and
copying are considered.Comment: 4 pages, 2 figure
Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts
We consider continuous -cocycles over a strictly ergodic
homeomorphism which fibers over an almost periodic dynamical system
(generalized skew-shifts). We prove that any cocycle which is not uniformly
hyperbolic can be approximated by one which is conjugate to an
-cocycle. Using this, we show that if a cocycle's homotopy
class does not display a certain obstruction to uniform hyperbolicity, then it
can be -perturbed to become uniformly hyperbolic. For cocycles arising
from Schr\"odinger operators, the obstruction vanishes and we conclude that
uniform hyperbolicity is dense, which implies that for a generic continuous
potential, the spectrum of the corresponding Schr\"odinger operator is a Cantor
set.Comment: Final version. To appear in Duke Mathematical Journa
AlGaN/GaN High Electron Mobility Transistors with Ultra -Wide Bandgap AlN buffer
International audienc
- …