268 research outputs found

    Intrinsic limits governing MBE growth of Ga-assisted GaAs nanowires on Si(111)

    Full text link
    Diffusion-enhanced and desorption-limited growth regimes of Ga-assisted GaAs nanowires were identified. In the latter regime, the number of vertical NWs with a narrow length distribution was increased by raising the growth temperature. The maximum axial growth rate; which can be quantified by the supplied rate of As atoms, is achieved when a dynamical equilibrium state is maintained in Ga droplets i.e. the number of impinging As atoms on the droplet surface is equivalent to that of direct deposited Ga atoms combining with the diffusing ones. The contribution of Ga diffusion to the wire growth was evidenced by the diameter-dependent NW axial growth rate

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Overdoped Cuprates With High Temperature Superconducting Transitions

    Get PDF
    Evidence for High Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both x-ray absorption near-edge structure (XANES) and bond valence sum (BVS) measurements are > 2.3 for structures in the homologous series (Cu0.75Mo0.25)Sr2(Y,Ce)sCu2O5+2s+{\delta} with s = 1, 2, 3, and 4. The s = 1 member, (Cu0.75Mo0.25)Sr2YCu2O7+{\delta}, 0 \leq {\delta} \leq 0.5, is structurally related to YBa2Cu3O7 in which 25% of the basal Cu cations [i.e. those in the chain layer] are replaced by Mo, and the Ba cations are replaced by Sr. After oxidation under high pressure the s = 1 member becomes superconducting with Tc = 88K. The Cu valence is estimated to be ~2.5, well beyond the ~2.3 value for which other High-Tc cuprates are considered to be overdoped Fermi liquids. The increase in valence is attributed to the additional 0.5 oxygen ions added per chain upon oxidation. The record short apical oxygen distance, at odds with current theory, suggests the possibility of a new pairing mechanism but further experiments are urgently needed to obtain more direct evidence. From the structural point of view the members with s \geq 2 are considered to be equivalent to single-layer cuprates. All have Tc ~ 56 K which is significantly higher than expected because they also have higher than expected Cu valences. The XANES-determined valences normalized to give values in the CuO2 layers are 2.24, 2.25, and 2.26 for s = 2, 3, and 4, while the BVS values determined for the valence in the CuO2 layer alone are 2.31-2.34 for the s = 2 and 3 members. No evidence for periodic ordering has been detected by electron diffraction and high resolution imaging studies. The possibility that the charge reservoir layers are able to screen long range coulomb interactions and thus enhance Tc is discussed

    Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short and mid-wavelength infrared regions

    Full text link
    This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells grown on bulk GaN for intersubband optoelectronics in the short- and mid-wavelength infrared ranges. The characterization results are compared to those for reference samples grown on the polar c-plane, and are verified by self-consistent Schr\"odinger-Poisson calculations. The best results in terms of mosaicity, surface roughness, photoluminescence linewidth and intensity, as well as intersubband absorption are obtained from m-plane structures, which display room-temperature intersubband absorption in the range from 1.5 to 2.9 um. Based on these results, a series of m-plane GaN/AlGaN multi-quantum-wells were designed to determine the accessible spectral range in the mid-infrared. These samples exhibit tunable room-temperature intersubband absorption from 4.0 to 5.8 um, the long-wavelength limit being set by the absorption associated with the second order of the Reststrahlen band in the GaN substrates

    Subnanosecond spectral diffusion of a single quantum dot in a nanowire

    Get PDF
    We have studied spectral diffusion of the photoluminescence of a single CdSe quantum dot inserted in a ZnSe nanowire. We have measured the characteristic diffusion time as a function of pumping power and temperature using a recently developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)] that offers subnanosecond resolution. These data are consistent with a model where only a \emph{single} carrier wanders around in traps located in the vicinity of the quantum dot

    High-Tc Superconducting Cuprates, (Ce,Y)sO2s-2Sr2(Cu2.75Mo0.25 )O6+[delta] : Tc-increase with apical Cu-O decrease at constant Cu-O planar distance

    Get PDF
    Evidence for high-Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both XANES measurements and bond valence sum calculations are greater than 2.25 and are in close agreement with each other for structures of the homologous series given in the title with s = 1, 2, 3, 4 and 5. Two questions arise from the present perspective: 1) Is all the action in the CuO2 layers? 2) Is there superconductivity beyond the usual dome? The record short apical oxygen distance found in the homologous series especially in the s = 1 member, at odds with the current theory, suggests the possibility of a new pairing mechanism. The apical Cu-O distance in the s = 1 member decreases upon oxygenation from 2.29 to 2.15 dot A while the Cu valence increases to 2.45 dot A.Peer reviewe

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts

    Full text link
    We consider continuous SL(2,R)SL(2,\mathbb{R})-cocycles over a strictly ergodic homeomorphism which fibers over an almost periodic dynamical system (generalized skew-shifts). We prove that any cocycle which is not uniformly hyperbolic can be approximated by one which is conjugate to an SO(2,R)SO(2,\mathbb{R})-cocycle. Using this, we show that if a cocycle's homotopy class does not display a certain obstruction to uniform hyperbolicity, then it can be C0C^0-perturbed to become uniformly hyperbolic. For cocycles arising from Schr\"odinger operators, the obstruction vanishes and we conclude that uniform hyperbolicity is dense, which implies that for a generic continuous potential, the spectrum of the corresponding Schr\"odinger operator is a Cantor set.Comment: Final version. To appear in Duke Mathematical Journa
    corecore