23 research outputs found

    Multiscale approach to provide a better physicochemical description of women breast microcalcifications

    Get PDF
    Despite the incidence of breast cancer among women, mammography and anatomopathology investigations are still the gold standard method for preventive screening and diagnosis. Several criteria are used to diagnose precisely the severity of the pathology like the distribution and shape of breast microcalcifications (BMCs). However, the link between the different chemical phases of BMCs and the cancer stage remains unclear. As BMCs physicochemical speciation has the potential to help clinicians during their diagnosis, this study aims to propose a methodology using advanced spectroscopical analysis techniques to finely characterize BMCs and uncover the relationship between mineralization processes and breast cancer. A state of the art in the domain is first proposed to highlight the role of BMCs and the importance of extensive analytical analysis using electron microscopy and vibrational techniques. Secondly, a detailed methodology for BMCs multiscale analysis is proposed and the relevance of each technique illustrated through the study of a biopsy from a patient suffering of an infiltrating low-grade ductal carcinoma: scanning electron microscopy analysis was used for the morphological description of BMCs, infrared micro and nanospectroscopy techniques for their chemical speciation at the micrometric and sub-micrometric scales

    Multiscale approach to provide a better physicochemical description of women breast microcalcifications

    Get PDF
    Despite the incidence of breast cancer among women, mammography and anatomopathology investigations are still the gold standard method for preventive screening and diagnosis. Several criteria are used to diagnose precisely the severity of the pathology like the distribution and shape of breast microcalcifications (BMCs). However, the link between the different chemical phases of BMCs and the cancer stage remains unclear. As BMCs physicochemical speciation has the potential to help clinicians during their diagnosis, this study aims to propose a methodology using advanced spectroscopical analysis techniques to finely characterize BMCs and uncover the relationship between mineralization processes and breast cancer. A state of the art in the domain is first proposed to highlight the role of BMCs and the importance of extensive analytical analysis using electron microscopy and vibrational techniques. Secondly, a detailed methodology for BMCs multiscale analysis is proposed and the relevance of each technique illustrated through the study of a biopsy from a patient suffering of an infiltrating low-grade ductal carcinoma: scanning electron microscopy analysis was used for the morphological description of BMCs, infrared micro and nanospectroscopy techniques for their chemical speciation at the micrometric and sub-micrometric scales

    Inflammation plays a critical role in 2,8-dihydroxyadenine nephropathy

    Get PDF
    Adenine phosphoribosyltransferase (APRT) deficiency is a genetic disease characterized by an increased production of 2,8 dihydroxyadenine (2,8-DHA) precipitating in urine, leading to a crystalline nephropathy and end-stage renal disease. Here, we describe the high prevalence of granuloma (88%) in biopsies from patients with APRT deficiency. A murine model of 2,8-DHA nephropathy was generated, showing that anakinra or dexamethasone, combined with allopurinol, improved renal function to a larger extent than allopurinol alone, the standard therapy. Inflammation plays a critical role in the development of 2,8-DHA nephropathy, and therapy based upon drugs targeting innate immunity could improve renal function recovery

    Using mid infrared to perform investigations beyond the diffraction limits of microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy

    Get PDF
    Understanding the physico-chemistry related to cristalline pathologies constitutes a challenge in several medical specialities such as nephrology, dermatology or oncology. Regarding nephrology, the chemical diversity of concretions such as kidney stones calls for characterization techniques to determine the chemical composition of concretions. The starting point of this contribution is given by Fourier Transform InfraRed (FTIR) spectroscopy which is routinely used at the hospital to determine the chemical composition of kidney stones as well as ectopic calcifications present in kidney biopsy. For kidney stones, the quantity of sample is sufficient to perform a significant analysis through classical FTIR. For ectopic calcifications, ÎŒ\mu FTIR can be inefficient in the case of ÎŒ\mu calcification in the tissue when their size is less than 10 Ό\mu m. For such samples, Optical PhotoThermal IR (OPT-IR) spectroscopy may constitute a way to overcome this experimental difficulty through the acquisition of IR spectrum with a spatial resolution close to 500 nm.To illustrate such opportunity, we first compare the IR spectrum acquired with a classical experimental set-up related to classical IR spectroscopy to IR spectrum collected with a OPT-IR one for different compounds namely calcium oxalate monohydrate, calcium oxalate dehydrate, calcium phosphate apatite and magnesium ammonium phosphate hexahydrate. Such comparison helps us to assess specificity of OPT-IR. Then, we consider several pathological calcifications associated to hyperoxaluria, adenine phosphoribosyltransferase (APRT) deficiency or the presence of Randall’s plaque. We will see that the nanometer spatial resolution constitutes a major advantage versus a micrometre one. Also, in the case of Randall’s plaque, we show that OPT-IR can determine the chemical composition of microscopic concretion without any kind of preparation. Such experimental fact is clearly a major advantage. Finally, we also extended this first investigation in nephrology by considering breast calcifications. In that case, if the number of chemical phases is quite low compared to the number of chemical phases identified in ectopic calcifications present in kidney (four instead of 24), the challenge is related to the possibility to distinguish between the different calcium phosphate namely amorphous carbonated calcium phosphate, CA and whitlockite.The complete set of data indicates the limitations and the advantages of OPT-IR spectroscopy

    Using mid infrared to perform investigations beyond the diffraction limits of microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy

    Get PDF
    Understanding the physico-chemistry related to cristalline pathologies constitutes a challenge in several medical specialities such as nephrology, dermatology or oncology. Regarding nephrology, the chemical diversity of concretions such as kidney stones calls for characterization techniques to determine the chemical composition of concretions. The starting point of this contribution is given by Fourier Transform InfraRed (FTIR) spectroscopy which is routinely used at the hospital to determine the chemical composition of kidney stones as well as ectopic calcifications present in kidney biopsy. For kidney stones, the quantity of sample is sufficient to perform a significant analysis through classical FTIR. For ectopic calcifications, ÎŒ\mu FTIR can be inefficient in the case of ÎŒ\mu calcification in the tissue when their size is less than 10 Ό\mu m. For such samples, Optical PhotoThermal IR (OPT-IR) spectroscopy may constitute a way to overcome this experimental difficulty through the acquisition of IR spectrum with a spatial resolution close to 500 nm.To illustrate such opportunity, we first compare the IR spectrum acquired with a classical experimental set-up related to classical IR spectroscopy to IR spectrum collected with a OPT-IR one for different compounds namely calcium oxalate monohydrate, calcium oxalate dehydrate, calcium phosphate apatite and magnesium ammonium phosphate hexahydrate. Such comparison helps us to assess specificity of OPT-IR. Then, we consider several pathological calcifications associated to hyperoxaluria, adenine phosphoribosyltransferase (APRT) deficiency or the presence of Randall’s plaque. We will see that the nanometer spatial resolution constitutes a major advantage versus a micrometre one. Also, in the case of Randall’s plaque, we show that OPT-IR can determine the chemical composition of microscopic concretion without any kind of preparation. Such experimental fact is clearly a major advantage. Finally, we also extended this first investigation in nephrology by considering breast calcifications. In that case, if the number of chemical phases is quite low compared to the number of chemical phases identified in ectopic calcifications present in kidney (four instead of 24), the challenge is related to the possibility to distinguish between the different calcium phosphate namely amorphous carbonated calcium phosphate, CA and whitlockite.The complete set of data indicates the limitations and the advantages of OPT-IR spectroscopy

    Inflammation plays a critical role in 2,8-dihydroxyadenine nephropathy

    Get PDF
    International audienceAdenine phosphoribosyltransferase (APRT) deficiency is a genetic disease characterized by an increased production of 2,8 dihydroxyadenine (2,8-DHA) precipitating in urine, leading to a crystalline nephropathy and end-stage renal disease. Here, we describe the high prevalence of granuloma (88%) in biopsies from patients with APRT deficiency. A murine model of 2,8-DHA nephropathy was generated, showing that anakinra or dexamethasone, combined with allopurinol, improved renal function to a larger extent than allopurinol alone, the standard therapy. Inflammation plays a critical role in the development of 2,8-DHA nephropathy, and therapy based upon drugs targeting innate immunity could improve renal function recovery
    corecore