82 research outputs found

    On the Fock Transformation in Nonlinear Relativity

    Full text link
    In this paper, we propose a new deformed Poisson brackets which leads to the Fock coordinate transformation by using an analogous procedure as in Deformed Special Relativity. We therefore derive the corresponding momentum transformation which is revealed to be different from previous results. Contrary to the earlier version of Fock's nonlinear relativity for which plane waves cannot be described, our resulting algebra keeps invariant for any coordinate and momentum transformations the four dimensional contraction pμxμp_{\mu} x^{\mu} , allowing therefore to associate plane waves for free particles. As in Deformed Special Relativity, we also derive a canonical transformation with which the new coordinates and momentum satisfy the usual Poisson brackets and therefore transform like the usual Lorentz vectors. Finally, we establish the dispersion relation for Fock's nonlinear relativity.Comment: 10 pages, no figure

    Entanglement swapping between multi-qudit systems

    Get PDF
    We generalize the entanglement swapping scheme originally proposed for two pairs of qubits to an arbitrary number qq of systems composed from an arbitrary number mjm_j of qudits. Each of the system is supposed to be prepared in a maximally entangled state of mjm_j qudits, while different systems are not correlated at all. We show that when a set j=1qaj\sum_{j=1}^q a_j particles (from each of the qq systems aja_j particles are measured) are subjected to a generalized Bell-type measurement, the resulting set of j=1q(mjaj)\sum_{j=1}^q (m_j-a_j) particles will collapse into a maximally entangled state

    Trajectories in the Context of the Quantum Newton's Law

    Full text link
    In this paper, we apply the one dimensional quantum law of motion, that we recently formulated in the context of the trajectory representation of quantum mechanics, to the constant potential, the linear potential and the harmonic oscillator. In the classically allowed regions, we show that to each classical trajectory there is a family of quantum trajectories which all pass through some points constituting nodes and belonging to the classical trajectory. We also discuss the generalization to any potential and give a new definition for de Broglie's wavelength in such a way as to link it with the length separating adjacent nodes. In particular, we show how quantum trajectories have as a limit when 0\hbar \to 0 the classical ones. In the classically forbidden regions, the nodal structure of the trajectories is lost and the particle velocity rapidly diverges.Comment: 17 pages, LateX, 6 eps figures, minor modifications, Title changed, to appear in Physica Script

    Levels of Plasmatic Macro- and Microelements in Late-pregnant Cows and Their Foetuses

    Full text link

    Levels of Mineral in the Blood Plasma of Cows and their Calves fed from Buckets

    Full text link

    Optimality of private quantum channels

    Full text link
    We addressed the question of optimality of private quantum channels. We have shown that the Shannon entropy of the classical key necessary to securely transfer the quantum information is lower bounded by the entropy exchange of the private quantum channel E\cal E and von Neumann entropy of the ciphertext state ϱ(0)\varrho^{(0)}. Based on these bounds we have shown that decomposition of private quantum channels into orthogonal unitaries (if exists) is optimizing the entropy. For non-ancillary single qubit PQC we have derived the optimal entropy for arbitrary set of plaintexts. In particular, we have shown that except when the (closure of the) set of plaintexts contains all states, one bit key is sufficient. We characterized and analyzed all the possible single qubit private quantum channels for arbitrary set of plaintexts. For the set of plaintexts consisting of all qubit states we have characterized all possible approximate private quantum channels and we have derived the relation between the security parameter and the corresponding minimal entropy.Comment: no commen

    Kraus representation in the presence of initial correlations

    Full text link
    We examine the validity of the Kraus representation in the presence of initial correlations and show that it is assured only when a joint dynamics is locally unitary.Comment: REVTeX4, 12 page

    Assessment of a Program for SARS-CoV-2 Screening and Environmental Monitoring in an Urban Public School District

    Get PDF
    Importance: Scalable programs for school-based SARS-CoV-2 testing and surveillance are needed to guide in-person learning practices and inform risk assessments in kindergarten through 12th grade settings. Objectives: To characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning. Design, Setting, and Participants: This pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva polymerase chain reaction testing of staff and students participating in in-person learning over a 5-week period from November 9 to December 11, 2020. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities. Main Outcomes and Measures: SARS-CoV-2 detection in saliva and environmental samples and risk factors for SARS-CoV-2 infection. Results: A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years; 303 women [66.2%]; 25 Black or African American [5.5%], 83 Hispanic [18.1%], 312 White [68.1%], and 35 other or not provided [7.6%]) and 315 students (mean age, 14.2 [0.7] years; 151 female students [48%]; 20 Black or African American [6.3%], 201 Hispanic [63.8%], 75 White [23.8%], and 19 other race or not provided [6.0%]). A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% (12 of 1000) to 7.0% (70 of 1000) among students and from 2.1% (21 of 1000) to 5.3% (53 of 1000) among staff compared with conventional reporting mechanisms during the pilot period. SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms. Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school. Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools. Conclusions and Relevance: In this study of staff and students in 3 urban public schools in Omaha, Nebraska, weekly screening of asymptomatic staff and students by saliva polymerase chain reaction testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. Collectively, these findings provide insight into the performance and community value of test-based SARS-CoV-2 screening and surveillance strategies in the kindergarten through 12th grade educational setting

    Radiotherapy Versus Inguinofemoral Lymphadenectomy as Treatment for Vulvar Cancer Patients With Micrometastases in the Sentinel Node: Results of GROINSS-V II

    Get PDF
    PURPOSE: The Groningen International Study on Sentinel nodes in Vulvar cancer (GROINSS-V)-II investigated whether inguinofemoral radiotherapy is a safe alternative to inguinofemoral lymphadenectomy (IFL) in vulvar cancer patients with a metastatic sentinel node (SN). METHODS: GROINSS-V-II was a prospective multicenter phase-II single-arm treatment trial, including patients with early-stage vulvar cancer (diameter < 4 cm) without signs of lymph node involvement at imaging, who had primary surgical treatment (local excision with SN biopsy). Where the SN was involved (metastasis of any size), inguinofemoral radiotherapy was given (50 Gy). The primary end point was isolated groin recurrence rate at 24 months. Stopping rules were defined for the occurrence of groin recurrences. RESULTS: From December 2005 until October 2016, 1,535 eligible patients were registered. The SN showed metastasis in 322 (21.0%) patients. In June 2010, with 91 SN-positive patients included, the stopping rule was activated because the isolated groin recurrence rate in this group went above our predefined threshold. Among 10 patients with an isolated groin recurrence, nine had SN metastases > 2 mm and/or extracapsular spread. The protocol was amended so that those with SN macrometastases (> 2 mm) underwent standard of care (IFL), whereas patients with SN micrometastases (≤ 2 mm) continued to receive inguinofemoral radiotherapy. Among 160 patients with SN micrometastases, 126 received inguinofemoral radiotherapy, with an ipsilateral isolated groin recurrence rate at 2 years of 1.6%. Among 162 patients with SN macrometastases, the isolated groin recurrence rate at 2 years was 22% in those who underwent radiotherapy, and 6.9% in those who underwent IFL (P = .011). Treatment-related morbidity after radiotherapy was less frequent compared with IFL. CONCLUSION: Inguinofemoral radiotherapy is a safe alternative for IFL in patients with SN micrometastases, with minimal morbidity. For patients with SN macrometastasis, radiotherapy with a total dose of 50 Gy resulted in more isolated groin recurrences compared with IFL

    A Bispecific Antibody Based Assay Shows Potential for Detecting Tuberculosis in Resource Constrained Laboratory Settings

    Get PDF
    The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings
    corecore