5,574 research outputs found
Recommended from our members
In-situ Neutron Diffraction Studies of Various Metals on Engin-X at ISIS
Form Factors and the Fragmentation Fraction Ratio
We present a lattice quantum chromodynamics determination of the scalar and
vector form factors for the decay over the full
physical range of momentum transfer. In conjunction with future experimental
data, our results will provide a new method to extract , which may
elucidate the current tension between exclusive and inclusive determinations of
this parameter. Combining the form factor results at non-zero recoil with
recent HPQCD results for the form factors, we
determine the ratios and . These results give the fragmentation
fraction ratios and ,
respectively. The fragmentation fraction ratio is an important ingredient in
experimental determinations of meson branching fractions at hadron
colliders, in particular for the rare decay . In addition to the form factor results, we make the first prediction
of the branching fraction ratio , where is an electron or muon. Current
experimental measurements of the corresponding ratio for the semileptonic
decays of mesons disagree with Standard Model expectations at the level of
nearly four standard deviations. Future experimental measurements of
may help understand this discrepancy.Comment: 21 pages, 15 figure
B and Bs semileptonic decay form factors with NRQCD/HISQ quarks
We discuss our ongoing effort to calculate form factors for several B and Bs
semileptonic decays. We have recently completed the first unquenched
calculation of the form factors for the rare decay B -> K ll. Extrapolated over
the full kinematic range of q^2 via model-independent z expansion, these form
factor results allow us to calculate several Standard Model observables. We
compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make
predictions elsewhere. We discuss preliminary results for Bs -> K l nu which,
when combined with anticipated experimental results, will provide an
alternative exclusive determination of |Vub|. We are exploring the possibility
of using ratios of form factors for this decay with those for the unphysical
decay Bs -> eta_s as a means of significantly reducing form factor errors. We
are also studying B -> pi l nu, form factors for which are combined with
experiment in the standard exclusive determination of |Vub|. Our simulations
use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad
configurations.Comment: 7 pages, 5 figures, presented at the 31st International Symposium on
Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond
The temperature dependence of the magnetic resonance spectra of
nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four
samples prepared under different conditions were studied with NV-
concentrations ranging from 10 ppb to 15 ppm. For all of these samples, the
axial zero-field splitting (ZFS) parameter, D, was found to vary significantly
with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter,
E, was non-zero (between 4 and 11 MHz) in all samples, and exhibited a
temperature dependence of dE/(EdT) = -1.4(3) x 10^(-4) K^(-1). The results
might be accounted for by considering local thermal expansion. The observation
of the temperature dependence of the ZFS parameters presents a significant
challenge for room-temperature diamond magnetometers and may ultimately limit
their bandwidth and sensitivity.Comment: 5 pages, 2 figures, 1 tabl
Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence
We report a general technique to study a given experimental time series with
superstatistics. Crucial for the applicability of the superstatistics concept
is the existence of a parameter that fluctuates on a large time scale
as compared to the other time scales of the complex system under consideration.
The proposed method extracts the main superstatistical parameters out of a
given data set and examines the validity of the superstatistical model
assumptions. We test the method thoroughly with surrogate data sets. Then the
applicability of the superstatistical approach is illustrated using real
experimental data. We study two examples, velocity time series measured in
turbulent Taylor-Couette flows and time series of log returns of the closing
prices of some stock market indices
Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds
We present a proof of the mirror conjecture of Aganagic-Vafa
[arXiv:hep-th/0012041] and Aganagic-Klemm-Vafa [arXiv:hep-th/0105045] on disk
enumeration in toric Calabi-Yau 3-folds for all smooth semi-projective toric
Calabi-Yau 3-folds. We consider both inner and outer branes, at arbitrary
framing. In particular, we recover previous results on the conjecture for (i)
an inner brane at zero framing in the total space of the canonical line bundle
of the projective plane (Graber-Zaslow [arXiv:hep-th/0109075]), (ii) an outer
brane at arbitrary framing in the resolved conifold (Zhou [arXiv:1001.0447]),
and (iii) an outer brane at zero framing in the total space of the canonical
line bundle of the projective plane (Brini [arXiv:1102.0281, Section 5.3]).Comment: 39 pages, 11 figure
Optical quenching and recovery of photoconductivity in single-crystal diamond
We study the photocurrent induced by pulsed-light illumination (pulse
duration is several nanoseconds) of single-crystal diamond containing nitrogen
impurities. Application of additional continuous-wave light of the same
wavelength quenches pulsed photocurrent. Characterization of the optically
quenched photocurrent and its recovery is important for the development of
diamond based electronics and sensing
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Mechanical forces such as fluid shear have been shown to enhance cell growth
and differentiation, but knowledge of their mechanistic effect on cells is
limited because the local flow patterns and associated metrics are not
precisely known. Here we present real-time, noninvasive measures of local
hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow
maps were further used to derive pressure, shear and fluid permeability fields.
Finally, remodeling of collagen gels in response to precise fluid flow
parameters was correlated with structural changes. It is anticipated that
accurate flow maps within 3D matrices will be a critical step towards
understanding cell behavior in response to controlled flow dynamics.Comment: 23 pages, 4 figure
Penetration characteristics of a liquid droplet impacting on a narrow gap:Experimental and numerical analysis
Experimentalists are limited in the amount of information they can derive from drop impact experiments on porous surfaces because of the short timescales involved and the normally opaque nature of porous materials. Numerical simulations can supplement experiments and provide researchers with previously unattainable information such as velocity and pressure profiles, and quantification of fluid volume flow rates into the pores. Ethanol drops, 2.0 mm in diameter, are impacted on a narrow gap at Weber numbers that match the impact of water drops, also 2.0 mm in diameter, on the same gap size in a previous study. The experiments show the ethanol drops cleaving at all Weber numbers tested, while the water drops completely enter the gap at low Weber numbers and only cleave at higher Weber numbers. A volume of fluid numerical model of the experiments is constructed in OpenFOAM and used to probe the interior of the drops during impact. For the water drop, a high-pressure region fills the drop during impact which continuously drives liquid into the gap. For the ethanol drops, the high-pressure region is smaller and quickly attenuates, which results in a near-zero vertical velocity at the entrance of the gap. Compared to water, the lower surface tension of ethanol causes these drops to spread further upon impact, recoil less, and overall have less liquid over the gap, which promotes cleaving. Against a superficial thought, when the penetration of liquids into porous materials is to be maximized, a higher surface tension liquid is therefore desirable
- …