66 research outputs found

    Woodland restoration on agricultural land: long-term impacts on soil quality

    Get PDF
    Woodland restoration is underway globally, to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long‐term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilised soil and earthworm sampling across a chronosequence of sites transitioning from ‘agricultural land’ to ‘secondary woodland’ (50‐110 years) and ‘ancient woodland’ (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad‐leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50‐60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad‐leaved woodlands (50‐110 years) were comparable to those found in long‐term ancient woodlands (>400 years). Our findings show that broad‐leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50 to 110 years, and provide intel on how restoration activities may be best targeted to maximise soil quality and functions

    Marine macroalgae as food for earthworms: Growth and selection experiments across ecotypes

    Get PDF
    Historically, subsistence farmers around the Atlantic coast of NW Europe utilised marine algae as a fertiliser in agroecosystems, a practice that continued in small areas and is now considered to have real potential for re-establishing sustainable food production systems on marginal soils. Earthworms form a significant component of soil fauna and their ecosystem services are well documented. Therefore, palatability of marine organic amendments to faunal detritivores of terrestrial systems is of interest. This work aimed to assess the potential for growth of Aporrectodea caliginosa, Lumbricus rubellus and Aporrectodea longa fed with two common macroalgae (seaweeds), Laminaria digitata and Fucus serratus. In addition, choice chambers were constructed to permit earthworm selection of these macroalgae with more conventional organic materials, horse manure (HM) and birch leaves (BL). Over a period of two months, earthworm species showed significantly greater mass gain with conventional food (p<0.05). Laminaria outperformed Fucus, which in turn was superior to soil alone. Similarly, when given a choice, a significant preference (p<0.001) was shown for the more nitrogen-rich HM and BL over the seaweeds. No removal was recorded for A. caliginosa when offered seaweeds only. By contrast, L. rubellus and A. longa showed significant preferences (p<0.001) for Laminaria over Fucus and fresh material over degraded. These results underline an interest to profit from natural resources (seaweeds) to maintain or improve soil biological quality in marginal coastal areas

    DNA Barcoding Reveals Cryptic Diversity in Lumbricus terrestris L., 1758 (Clitellata): Resurrection of L. herculeus (Savigny, 1826)

    Get PDF
    The widely studied and invasive earthworm, Lumbricus terrestris L., 1758 has been the subject of nomenclatural debate for many years. However these disputes were not based on suspicions of heterogeneity, but rather on the descriptions and nomenclatural acts associated with the species name. Large numbers of DNA barcode sequences of the cytochrome oxidase I obtained for nominal L. terrestris and six congeneric species reveal that there are two distinct lineages within nominal L. terrestris. One of those lineages contains the Swedish population from which the name-bearing specimen of L. terrestris was obtained. The other contains the population from which the syntype series of Enterion herculeum Savigny, 1826 was collected. In both cases modern and old representatives yielded barcode sequences allowing us to clearly establish that these are two distinct species, as different from one another as any other pair of congeners in our data set. The two are morphologically indistinguishable, except by overlapping size-related characters. We have designated a new neotype for L. terrestris. The newly designated neotype and a syntype of L. herculeus yielded DNA adequate for sequencing part of the cytochrome oxidase I gene (COI). The sequence data make possible the objective determination of the identities of earthworms morphologically identical to L. terrestris and L. herculeus, regardless of body size and segment number. Past work on nominal L. terrestris could have been on either or both species, although L. herculeus has yet to be found outside of Europe

    Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    Get PDF
    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on. This study therefore points to the necessity of also considering soil feedback mechanisms in order to gain a comprehensive and holistic understanding of the impacts of current global change phenomena on the stability of essential ecosystem functions

    Self-Assemblage and Quorum in the Earthworm Eisenia fetida (Oligochaete, Lumbricidae)

    Get PDF
    Despite their ubiquity and ecological significance in temperate ecosystems, the behavioural ecology of earthworms is not well described. This study examines the mechanisms that govern aggregation behaviour specially the tendency of individuals to leave or join groups in the compost earthworm Eisenia fetida, a species with considerable economic importance, especially in waste management applications. Through behavioural assays combined with mathematical modelling, we provide the first evidence of self-assembled social structures in earthworms and describe key mechanisms involved in cluster formation. We found that the probability of an individual joining a group increased with group size, while the probability of leaving decreased. Moreover, attraction to groups located at a distance was observed, suggesting a role for volatile cues in cluster formation. The size of earthworm clusters appears to be a key factor determining the stability of the group. These findings enhance our understanding of intra-specific interactions in earthworms and have potential implications for extraction and collection of earthworms in vermicomposting processes

    Predation on earthworms by the Black-headed Gull (Larus ridibundus L.)

    No full text

    Earthworm effect on root morphology in a split root system

    No full text
    International audiencePlants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect
    corecore