28 research outputs found

    Towards open-closed string duality: Closed Strings as Open String Fields

    Get PDF
    We establish a translation dictionary between open and closed strings, starting from open string field theory. Under this correspondence, (off-shell) level-matched closed string states are represented by star algebra projectors in open string field theory. Particular attention is paid to the zero mode sector, which is indispensable in order to generate closed string states with momentum. As an outcome of our identification, we show that boundary states, which in closed string theory represent D-branes, correspond to the identity string field in the open string side. It is to be remarked that closed string theory D-branes are thus given by an infinite superposition of star algebra projectors.Comment: 29 page

    Parent form for higher spin fields on anti-de Sitter space

    Full text link
    We construct a first order parent field theory for free higher spin gauge fields on constant curvature spaces. As in the previously considered flat case, both Fronsdal's and Vasiliev's unfolded formulations can be reached by two different straightforward reductions. The parent theory itself is formulated using a higher dimensional embedding space and turns out to be geometrically extremely transparent and free of the intricacies of both of its reductions.Comment: 39 pages, LaTeX; misprints corrected, references adde

    Current Exchanges for Reducible Higher Spin Multiplets and Gauge Fixing

    Get PDF
    We compute the current exchanges between triplets of higher spin fields which describe reducible representations of the Poincare group. Through this computation we can extract the propagator of the reducible higher spin fields which compose the triplet. We show how to decompose the triplet fields into irreducible HS fields which obey Fronsdal equations, and how to compute the current-current interaction for the cubic couplings which appear in ArXiv:0708.1399 [hep-th] using the decomposition into irreducible modes. We compare this result with the same computation using a gauge fixed (Feynman) version of the triplet Lagrangian which allows us to write very simple HS propagators for the triplet fields.Comment: 26 pages, 1 table; v3 some clarifications and references added, typos corrected. Published versio

    On the relation between local and geometric Lagrangians for higher spins

    Full text link
    Equations of motion for free higher-spin gauge fields of any symmetry can be formulated in terms of linearised curvatures. On the other hand, gauge invariance alone does not fix the form of the corresponding actions which, in addition, either contain higher derivatives or involve inverse powers of the d'Alembertian operator, thus introducing possible subtleties in degrees of freedom count. We suggest a path to avoid ambiguities, starting from local, unconstrained Lagrangians previously proposed, and integrating out the auxiliary fields from the functional integral, thus generating a unique non-local theory expressed in terms of curvatures.Comment: 14 pages. Contribution to the proceedings of the 1st Mediterranean Conference on Classical and Quantum Gravity, Kolymbary (Crete, Greece) September 14-18 200

    Consistent couplings between spin-2 and spin-3 massless fields

    Get PDF
    We solve the problem of constructing consistent first-order cross-interactions between spin-2 and spin-3 massless fields in flat spacetime of arbitrary dimension n > 3 and in such a way that the deformed gauge algebra is non-Abelian. No assumptions are made on the number of derivatives involved in the Lagrangian, except that it should be finite. Together with locality, we also impose manifest Poincare invariance, parity invariance and analyticity of the deformations in the coupling constants.Comment: LaTeX file. 29 pages, no figures. Minor corrections. Accepted for publication in JHE

    Massive higher spins and holography

    Full text link
    We review recent progress towards the understanding of higher spin gauge symmetry breaking in AdS space from a holographic vantage point. According to the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant should be dual to a theory in AdS which exhibits higher spin gauge symmetry enhancement. When the SYM coupling is non-zero, all but a handful of HS currents are violated by anomalies, and correspondingly local higher spin symmetry in the bulk gets spontaneously broken. In agreement with previous results and holographic expectations, we find that, barring one notable exception (spin 1 eating spin 0), the Goldstone modes responsible for HS symmetry breaking in AdS have non-vanishing mass even in the limit in which the gauge symmetry is restored. We show that spontaneous breaking a' la Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy), September 12-16, 200

    Detours and Paths: BRST Complexes and Worldline Formalism

    Get PDF
    We construct detour complexes from the BRST quantization of worldline diffeomorphism invariant systems. This yields a method to efficiently extract physical quantum field theories from particle models with first class constraint algebras. As an example, we show how to obtain the Maxwell detour complex by gauging N=2 supersymmetric quantum mechanics in curved space. Then we concentrate on first class algebras belonging to a class of recently introduced orthosymplectic quantum mechanical models and give generating functions for detour complexes describing higher spins of arbitrary symmetry types. The first quantized approach facilitates quantum calculations and we employ it to compute the number of physical degrees of freedom associated to the second quantized, field theoretical actions.Comment: 1+35 pages, 1 figure; typos corrected and references added, published versio

    Higher-Spin Gauge Fields Interacting with Scalars: The Lagrangian Cubic Vertex

    Full text link
    We apply a recently presented BRST procedure to construct the Largangian cubic vertex of higher-spin gauge field triplets interacting with massive free scalars. In flat space, the spin-s triplet propagates the series of irreducible spin-s, s-2,..,0/1 modes which couple independently to corresponding conserved currents constructed from the scalars. The simple covariantization of the flat space result is not enough in AdS, as new interaction vertices appear. We present in detail the cases of spin-2 and spin-3 triplets coupled to scalars. Restricting to a single irreducible spin-s mode we uncover previously obtained results. We also present an alternative derivation of the lower spin results based on the idea that higher-spin gauge fields arise from the gauging of higher derivative symmetries of free matter Lagrangians. Our results can be readily applied to holographic studies of higher-spin gauge theories.Comment: 26 pages, v2: references adde

    BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    Full text link
    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections 5, 7.1, 7.2 with examples, conclusion with all basic results unchanged, corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164), added Refs. 52, 53, 54, examples for massive fields developed by 2 way
    corecore