28 research outputs found
Towards open-closed string duality: Closed Strings as Open String Fields
We establish a translation dictionary between open and closed strings,
starting from open string field theory. Under this correspondence, (off-shell)
level-matched closed string states are represented by star algebra projectors
in open string field theory. Particular attention is paid to the zero mode
sector, which is indispensable in order to generate closed string states with
momentum. As an outcome of our identification, we show that boundary states,
which in closed string theory represent D-branes, correspond to the identity
string field in the open string side. It is to be remarked that closed string
theory D-branes are thus given by an infinite superposition of star algebra
projectors.Comment: 29 page
Parent form for higher spin fields on anti-de Sitter space
We construct a first order parent field theory for free higher spin gauge
fields on constant curvature spaces. As in the previously considered flat case,
both Fronsdal's and Vasiliev's unfolded formulations can be reached by two
different straightforward reductions. The parent theory itself is formulated
using a higher dimensional embedding space and turns out to be geometrically
extremely transparent and free of the intricacies of both of its reductions.Comment: 39 pages, LaTeX; misprints corrected, references adde
Current Exchanges for Reducible Higher Spin Multiplets and Gauge Fixing
We compute the current exchanges between triplets of higher spin fields which
describe reducible representations of the Poincare group. Through this
computation we can extract the propagator of the reducible higher spin fields
which compose the triplet. We show how to decompose the triplet fields into
irreducible HS fields which obey Fronsdal equations, and how to compute the
current-current interaction for the cubic couplings which appear in
ArXiv:0708.1399 [hep-th] using the decomposition into irreducible modes. We
compare this result with the same computation using a gauge fixed (Feynman)
version of the triplet Lagrangian which allows us to write very simple HS
propagators for the triplet fields.Comment: 26 pages, 1 table; v3 some clarifications and references added, typos
corrected. Published versio
On the relation between local and geometric Lagrangians for higher spins
Equations of motion for free higher-spin gauge fields of any symmetry can be
formulated in terms of linearised curvatures. On the other hand, gauge
invariance alone does not fix the form of the corresponding actions which, in
addition, either contain higher derivatives or involve inverse powers of the
d'Alembertian operator, thus introducing possible subtleties in degrees of
freedom count. We suggest a path to avoid ambiguities, starting from local,
unconstrained Lagrangians previously proposed, and integrating out the
auxiliary fields from the functional integral, thus generating a unique
non-local theory expressed in terms of curvatures.Comment: 14 pages. Contribution to the proceedings of the 1st Mediterranean
Conference on Classical and Quantum Gravity, Kolymbary (Crete, Greece)
September 14-18 200
Consistent couplings between spin-2 and spin-3 massless fields
We solve the problem of constructing consistent first-order
cross-interactions between spin-2 and spin-3 massless fields in flat spacetime
of arbitrary dimension n > 3 and in such a way that the deformed gauge algebra
is non-Abelian. No assumptions are made on the number of derivatives involved
in the Lagrangian, except that it should be finite. Together with locality, we
also impose manifest Poincare invariance, parity invariance and analyticity of
the deformations in the coupling constants.Comment: LaTeX file. 29 pages, no figures. Minor corrections. Accepted for
publication in JHE
Massive higher spins and holography
We review recent progress towards the understanding of higher spin gauge
symmetry breaking in AdS space from a holographic vantage point. According to
the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant
should be dual to a theory in AdS which exhibits higher spin gauge symmetry
enhancement. When the SYM coupling is non-zero, all but a handful of HS
currents are violated by anomalies, and correspondingly local higher spin
symmetry in the bulk gets spontaneously broken. In agreement with previous
results and holographic expectations, we find that, barring one notable
exception (spin 1 eating spin 0), the Goldstone modes responsible for HS
symmetry breaking in AdS have non-vanishing mass even in the limit in which the
gauge symmetry is restored. We show that spontaneous breaking a' la
Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field
is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained
Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy),
September 12-16, 200
Detours and Paths: BRST Complexes and Worldline Formalism
We construct detour complexes from the BRST quantization of worldline
diffeomorphism invariant systems. This yields a method to efficiently extract
physical quantum field theories from particle models with first class
constraint algebras. As an example, we show how to obtain the Maxwell detour
complex by gauging N=2 supersymmetric quantum mechanics in curved space. Then
we concentrate on first class algebras belonging to a class of recently
introduced orthosymplectic quantum mechanical models and give generating
functions for detour complexes describing higher spins of arbitrary symmetry
types. The first quantized approach facilitates quantum calculations and we
employ it to compute the number of physical degrees of freedom associated to
the second quantized, field theoretical actions.Comment: 1+35 pages, 1 figure; typos corrected and references added, published
versio
Higher-Spin Gauge Fields Interacting with Scalars: The Lagrangian Cubic Vertex
We apply a recently presented BRST procedure to construct the Largangian
cubic vertex of higher-spin gauge field triplets interacting with massive free
scalars. In flat space, the spin-s triplet propagates the series of irreducible
spin-s, s-2,..,0/1 modes which couple independently to corresponding conserved
currents constructed from the scalars. The simple covariantization of the flat
space result is not enough in AdS, as new interaction vertices appear. We
present in detail the cases of spin-2 and spin-3 triplets coupled to scalars.
Restricting to a single irreducible spin-s mode we uncover previously obtained
results. We also present an alternative derivation of the lower spin results
based on the idea that higher-spin gauge fields arise from the gauging of
higher derivative symmetries of free matter Lagrangians. Our results can be
readily applied to holographic studies of higher-spin gauge theories.Comment: 26 pages, v2: references adde
BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields
We construct a Lagrangian description of irreducible half-integer higher-spin
representations of the Poincare group with the corresponding Young tableaux
having two rows, on a basis of the BRST approach. Starting with a description
of fermionic higher-spin fields in a flat space of any dimension in terms of an
auxiliary Fock space, we realize a conversion of the initial operator
constraint system (constructed with respect to the relations extracting
irreducible Poincare-group representations) into a first-class constraint
system. For this purpose, we find auxiliary representations of the constraint
subsuperalgebra containing the subsystem of second-class constraints in terms
of Verma modules. We propose a universal procedure of constructing
gauge-invariant Lagrangians with reducible gauge symmetries describing the
dynamics of both massless and massive fermionic fields of any spin. No
off-shell constraints for the fields and gauge parameters are used from the
very beginning. It is shown that the space of BRST cohomologies with a
vanishing ghost number is determined only by the constraints corresponding to
an irreducible Poincare-group representation. To illustrate the general
construction, we obtain a Lagrangian description of fermionic fields with
generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the
complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections
5, 7.1, 7.2 with examples, conclusion with all basic results unchanged,
corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part
with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164),
added Refs. 52, 53, 54, examples for massive fields developed by 2 way