215 research outputs found

    Statistical evolution of isotope composition of nuclear fragments

    Get PDF
    Calculations within the statistical multifragmentation model show that the neutron content of intermediate mass fragments can increase in the region of liquid-gas phase transition in finite nuclei. The model predicts also inhomogeneous distributions of fragments and their isospin in the freeze-out volume caused by an angular momentum and external long-range Coulomb field. These effects can take place in peripheral nucleus-nucleus collisions at intermediate energies and lead to neutron-rich isotopes produced in the midrapidity kinematic region.Comment: 14 pages with 4 figures. GSI preprint, Darmstadt, 200

    Determination of the freeze-out temperature by the isospin thermometer

    Full text link
    The high-resolution spectrometer FRS at GSI Darmstadt provides the full isotopic and kinematical identification of fragmentation residues in relativistic heavy-ion collisions. Recent measurements of the isotopic distribution of heavy projectile fragments led to a very surprising new physical finding: the residue production does not lose the memory of the N/Z of the projectile ending up in a universal de-excitation corridor; an ordering of the residues in relation to the neutron excess of the projectile has been observed. These unexpected features can be interpreted as a new manifestation of multifragmentation. We have found that at the last stage of the reaction the temperature of the big clusters subjected to evaporation is limited to a universal value. The thermometer to measure this limiting temperature is the neutron excess of the residues.Comment: 8 pages, 6 figures, corrected some misprints in the abstract, to be published in "Yadernaya Fizika" as a proceeding of the "VII International School Seminar on Heavy-Ion Phyics", Dubna (Russia), May 27 - June 1, 200

    Symmetry energy and the isospin dependent equation of state

    Get PDF
    The isoscaling parameter α\alpha, from the fragments produced in the multifragmentation of 58^{58}Ni + 58^{58}Ni, 58^{58}Fe + 58^{58}Ni and 58^{58}Fe + 58^{58}Fe reactions at 30, 40 and 47 MeV/nucleon, was compared with that predicted by the antisymmetrized molecular dynamic (AMD) calculation based on two different nucleon-nucleon effective forces, namely the Gogny and Gogny-AS interaction. The results show that the data agrees better with the choice of Gogny-AS effective interaction, resulting in a symmetry energy of \sim 18-20 MeV. The observed value indicate that the fragments are formed at a reduced density of \sim 0.08 fm3^{-3}.Comment: 5 pages, 5 figures, Accepted for publication in Phys. Rev. C (Rapid Communication

    Direct Test of the Scalar-Vector Lorentz Structure of the Nucleon- and Antinucleon-Nucleus Potential

    Get PDF
    Quantum Hadrodynamics in mean field approximation describes the effective nucleon-nucleus potential (about -50 MeV deep) as resulting from a strong repulsive vector (about 400 MeV) and a strong attractive scalar (about -450 MeV) contribution. This scalar-vector Lorentz structure implies a significant lowering of the threshold for ppˉp\bar{p} photoproduction on a nucleus by about 850 MeV as compared to the free case since charge conjugation reverses the sign of the vector potential contribution in the equation of motion for the pˉ\bar{p} states. It also implies a certain size of the photon induced ppˉp\bar{p} pair creation cross section near threshold which is calculated for a target nucleus 208^{208}Pb. We also indicate a measurable second signature of the ppˉp\bar{p} photoproduction process by estimating the increased cross section for emission of charged pions as a consequence of pˉ\bar{p} annihilation within the nucleus.Comment: 18 pages latex, 5 PS figure

    Mass Parameterizations and Predictions of Isotopic Observables

    Full text link
    We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the impact of such extrapolations on the predictions of isotopic observables in multifragmentation. We obtain improved mass predictions by incorporating measured masses and extrapolating to unmeasured masses with a mass formula that includes surface symmetry and Coulomb terms. We find that using accurate masses has a significant impact on the predicted isotopic observables.Comment: 12 pages, 4 figure

    Symmetry energy and the isoscaling properties of the fragments produced in 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 - 53 MeV/nucleon

    Full text link
    The symmetry energy and the isoscaling properties of the fragments produced in the multifragmentation of 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 - 53 MeV/nucleon were investigated within the framework of statistical multifragmentation model. The isoscaling parameters α\alpha, from the primary (hot) and secondary (cold) fragment yield distributions, were studied as a function of excitation energy, isospin (neutron-to-proton asymmetry) and fragment symmetry energy. It is observed that the isoscaling parameter α\alpha decreases with increasing excitation energy and decreasing symmetry energy. The parameter α\alpha is also observed to increase with increasing difference in the isospin of the fragmenting system. The sequential decay of the primary fragments into secondary fragments, when studied as a function of excitation energy and isospin of the fragmenting system, show very little influence on the isoscaling parameter. The symmetry energy however, has a strong influence on the isospin properties of the hot fragments. The experimentally observed scaling parameters can be explained by symmetry energy that is significantly lower than that for the ground state nuclei near saturation density. The results indicate that the properties of hot nuclei at excitation energies, densities and isospin away from the normal ground state nuclei could be significantly different.Comment: 14 pages, 15 figure

    Isospin dependent multifragmentation of relativistic projectiles

    Full text link
    The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at the GSI Schwerionen Synchrotron (SIS). Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the statistical multifragmentation model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment-charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z and the isoscaling parameters of Z<=10 fragments. The calculations are, furthermore, used to address open questions regarding the modification of the surface-term coefficient at freeze-out, the N/Z dependence of the nuclear caloric curve, and the isotopic evolution of the spectator system between its formation during the initial cascade stage of the reaction and its subsequent breakup.Comment: 23 pages, 29 figures, published in Physical Review

    Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions

    Full text link
    Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at 300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10 proton accelerator. In total, 221 independent and cumulative yields of products of half-lives from 6.6 min to 312 days have been obtained via the direct-spectrometry method. The measured data have been compared with the experimental data obtained elsewhere by the direct and inverse kinematics methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI, ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1, >.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good agreement with the inverse kinematics results and disprove the results of some earlier activation measurements that were quite different from the inverse kinematics measurements. The most significant calculation-to-experiment differences are observed in the yields of the A<30 light nuclei, indicating that further improvements in nuclear reaction models are needed, and pointing out as well to a necessity of more complete measurements of such reactions.Comment: 53 pages, 9 figures, 6 tables, only pdf file, submitted to Phys. Rev.
    corecore