100 research outputs found

    Characterisation of macrogel composition from industrial natural rubber samples: Influence of proteins on the macrogel crosslink density

    Full text link
    The insoluble (macrogel) and soluble fractions of 11 commercial natural rubber (NR) samples (Technically specified rubber) were separated. Nitrogen titrations and lipid extractions enabled a quantitative assessment of the proteins and extractable lipids in each fraction. Swelling was measured in tetrahydrofuran in order to evaluate the crosslink density (Mc –1) of each macrogel. While the soluble fraction had a high lipid concentration, the majority of non-isoprene compounds of the macrogel were found to be proteins, which accounted for 4.6 to 50.8% (w/w) of the macrogel. Indeed, the macrogels contained less than 0.5% (w/w) extractable lipids. However, our results showed that the soluble fraction contained large quantities of proteins (16–66% of the nitrogen content of the raw NR sample), probably structuring microaggregates. An exponential correlation (R2 > 0.96) was found between the crosslink density and the protein concentration of macrogel, suggesting that proteins are involved in the majority of crosslinks in macrogel. (Résumé d'auteur

    Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction

    Get PDF
    Metal–organic frameworks (MOFs) are attractive porous materials for electrocatalytic applications associated with carbon-free energy storage and conversion. This type of material usually requires a post-treatment to be used as electrocatalyst. The present work comprehensively investigates the electrochemical activation of a cobalt-MOF@Nafion composite that produces outstanding electrocatalytic performance for the water oxidation reaction at neutral pH. A detailed electrochemical characterization reveals that the electroactivation of the composite requires the participation of the oxygen evolution reaction (OER) and leads to a significant increase in the electroactive population of cobalt centers. It is shown that an increase of the applied activation potential in the OER region results in a faster electroactivation of the Co-MOF without affecting the intrinsic electrocatalytic properties of the active cobalt centers, as evidenced by the unique linear correlation between the electrocatalytic OER current and the population of electroactive cobalt. In addition, at structural level, it is shown that the electrochemical activation causes the partial disruption of the Nafion adlayer, as well as morphological changes of the Co–MOF particles from a compact, rounded morphology, before electrochemical activation, to a more open and expanded structure, after electroactivation; with the concomitant increase of the number of surface–exposed cobalt centers. Interestingly, these cobalt centers retain their coordinative chemistry and their laminar distribution in the nanosheets at the nanoscale, which is consistent with the preservation of their intrinsic electrocatalytic activity after potential–induced activation. In this scenario, these results suggest that only the electroactivated cobalt centers with good accessibility to the electrolyte are electrochemically active. This work provides a better understanding of the processes and structural changes underlying the electrochemical activation at neutral pH of a Co–MOF for boosting the electrocatalytic water oxidation reaction9 página

    Dynamic measurement of the height and volume of migrating cells by a novel fluorescence microscopy technique

    Full text link
    We propose a new technique to measure the volume of adherent migrating cells. The method is based on a negative staining where a fluorescent, non cell-permeant dye is added to the extracellular medium. The specimen is observed with a conventional fluorescence microscope in a chamber of uniform height. Given that the fluorescence signal depends on the thickness of the emitting layer, the objects excluding the fluorescent dye (i.e., cells) appear dark, and the decrease of the fluorescent signal with respect to the background is expected to give information about the height and the volume of the object. Using a glass microfabricated pattern with steps of defined heights, we show that the drop in fluorescence intensity is indeed proportional to the height of the step and obtain calibration curves relating fluorescence intensity to height. The technique, termed fluorescence displacement method, is further validated by comparing our measurements with the ones obtained by atomic force microscopy (AFM). We apply our method to measure the real-time volume dynamics of migrating fish epidermal keratocytes subjected to osmotic stress. The fluorescence displacement technique allows fast and precise monitoring of cell height and volume, thus providing a valuable tool for characterizing the three-dimensional behaviour of migrating cells

    Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C\u3eT), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the g inner dyneins (DHC7 and DHC3) and the d inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process
    • …
    corecore