52 research outputs found

    Trend analysis of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli isolated from Belgian pork and poultry meat products using surveillance data of 2004-2009

    Get PDF
    The purpose of this study was to analyze and compare antimicrobial resistance in Campylobacter spp. isolated from pork and poultry carcasses and pork and poultry meat(at slaughterhouse level, during meat cutting and at retail) in Belgium, using available surveillance data over the period 2004-2009. The susceptibilities of 1724 Campylobacter isolates for ampicillin, ciprofloxacin, nalidixic acid, tetracycline, erythromycin and gentamicin were tested by E-test. Gentamicin resistance was low (near 0%) till 2007, with an increase to over 20% by 2009 for all species-matrix combinations. Resistance to tetracycline fluctuated around the same level during the entire study period and was significantly higher (p-value <0.05) in C. coli than in C. jejuni. Erythromycin resistance was low and showed a slight decrease between 2004 and 2007, but increased from 2007 till 2009. Fluoroquinolone and ampicillin resistance was significantly higher in isolates derived from poultry, compared to pork-related isolates. This correlates with the higher use of these antimicrobials in poultry husbandry. With one out of four, C. coli from poultry showed the most apparent multiresistance (resistance to four or more antimicrobials). Approximately 1% of the poultry-derived isolates (both C. coli and C. jejuni) showed resistance to all tested antimicrobials, while none was found in pork product

    Novel norovirus recombinants and of GII.4 sub-lineages associated with outbreaks between 2006 and 2010 in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noroviruses (NoVs) are an important cause of acute gastroenteritis in humans worldwide. To gain insight into the epidemiologic patterns of NoV outbreaks and to determine the genetic variation of NoVs strains circulating in Belgium, stool samples originating from patients infected with NoVs in foodborne outbreak investigations were analysed between December 2006 and December 2010.</p> <p>Results</p> <p>NoVs were found responsible of 11.8% of all suspected foodborne outbreaks reported in the last 4 years and the number of NoV outbreaks reported increased along the years representing more than 30% of all foodborne outbreaks in 2010. Genogroup II outbreaks largely predominated and represented more than 90% of all outbreaks. Phylogenetic analyses were performed with 63 NoV-positive samples for the partial polymerase (N = 45) and/or capsid gene (N = 35) sequences. For 12 samples, sequences covering the ORF1-ORF2 junction were obtained. A variety of genotypes was found among genogroups I and II; GII.4 was predominant followed in order of importance by GII.2, GII.7, GII.13, GI.4 and GI.7. In the study period, GII.4 NoVs variants 2006a, 2006b, 2007, 2008 and 2010 were identified. Moreover, phylogenetic analyses identified different recombinant NoV strains that were further characterised as intergenotype (GII.e/GII.4 2007, GII.e/GII.3 and GII.g/GII.1) and intersub-genotype (GII.4 2006b/GII.4 2007 and GII.4 2010/GII.4 2010b) recombinants.</p> <p>Conclusions</p> <p>NoVs circulating in the last 4 years in Belgium showed remarkable genetic diversity either by small-scale mutations or genetic recombination. In this period, GII.4 2006b was successfully displaced by the GII.4 2010 subtype, and previously reported epidemic GII.b recombinants seemed to have been superseded by GII.e recombinants in 2009 and GII.g recombinants in 2010. This study showed that the emergence of novel GII.4 variants together with novel GII recombinants could lead to an explosion in NoV outbreaks, likewise to what was observed in 2008 and 2010. Among recombinants detected in this study, two hitherto unreported strains GII.e/GII.3 and GII.g/GII.1 were characterised. Surveillance will remain important to monitor contemporaneously circulating strains in order to adapt preventive and curative strategies.</p

    Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium

    Get PDF
    Copyright © 2018 Elhadidy, Miller, Arguello, Álvarez-Ordóñez, Duarte, Dierick and Botteldoorn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.[EN]Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC. Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA (p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic resistance in C. jejuni, unraveling some the mechanisms which confer antimicrobial resistance and particular clones associated to the carriage and spread of resistance genes.SIWe would like to thank the Belgian Federal Science Policy (BELSBO) for supporting the post-doctoral fellowship of ME at WIV-ISP. The authors would like to thank Dr. Shannon Manning at the University of Michigan and Dr. Dorota Korsak at the University of Warsaw for providing positive controls for mutations in the 23S rRNA gene. Parts of this work were presented at the Twenty Seventh European conference of Clinical Microbiology and Infectious Diseases (ECCMID), April 21-25 2017, Vienna, Austria and the Twenty first Conference on Food Microbiology in Brussels, Belgium, 15-16 September 2016. AA-O acknowledges the financial support by Fundación BBVA and Ministerio de Economía y Competitividad (AGL2016-78085-P). HA is a post-doctoral researcher supported by the Juan de la Cierva Post-doctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FJCI-2014-22877)

    First detection of a plasmid located carbapenem resistant bla(VIM-1) gene in E. coli isolated from meat products at retail in Belgium in 2015

    Get PDF
    Carbapenemase-producing Enterobacteriaceae (CPE) confer resistance to antibiotics that are of critical importance to human medicine. There have only been a few reported cases of CPEs in the European food chain. We report the first detection of a carbapenemase-producing Escherichia coli (ST 5869) in the Belgian food chain. Our aim was to characterize the origin of the carbapenem resistance in the E. coli isolate. The isolate was detected during the screening of 178 minced pork samples and was shown to contain the carbapenemase gene bla(VIM-1) by PCR and Sanger sequencing. Whole genome short and long read sequencing (MiSeq and MinION) was performed to characterize the isolate. With a hybrid assembly we reconstructed a 190,205 bp IncA/C2 plasmid containing bla(VIM-1) (S15FP06257_p), in addition to other critically important resistance genes. This plasmid showed only low similarity to plasmids containing bla(VIM-1) previously reported in Germany. Moreover, no sequences existed in the NCBI nucleotide database that completely covered S15FP06257_p. Analysis of the bla(VIM-1) gene cassette demonstrated that it likely originated from an integron of a Klebsiella plasmid reported previously in a clinical isolate in Europe, suggesting that the meat could have been contaminated by human handling in one of the steps of the food chain. This study shows the relevance of fully reconstructing plasmids to characterize their genetic content and to allow source attribution. This is especially important in view of the potential risk of antimicrobial resistance gene transmission through mobile elements as was reported here for the of public health concern bla(VIM-1)

    Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments

    Get PDF
    Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 µg/ml and 4.0 µg/ml in bovine feces for CP and CL, respectively, and at or below 8.0 µg/ml and 4.0 µg/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 µg/ml in feces and 0.03 µg/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products

    Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments

    Get PDF
    Abstract: Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 µg/ml and 4.0 µg/ml in bovine feces for CP and CL, respectively, and at or below 8.0 µg/ml and 4.0 µg/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 µg/ml in feces and 0.03 µg/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products
    corecore