24 research outputs found

    Variation within and between Closely Related Species Uncovers High Intra-Specific Variability in Dispersal

    Get PDF
    Mounting evidence shows that contrasting selection pressures generate variability in dispersal patterns among individuals or populations of the same species, with potential impacts on both species dynamics and evolution. However, this variability is hardly considered in empirical works, where a single dispersal function is considered to adequately reflect the species-specific dispersal ability, suggesting thereby that within-species variation is negligible as regard to inter-specific differences in dispersal abilities. We propose here an original method to make the comparison of intra- and inter-specific variability in dispersal, by decomposing the diversity of that trait along a phylogeny of closely related species. We used as test group European butterflies that are classic study organisms in spatial ecology. We apply the analysis separately to eight metrics that reflect the dispersal propensity, the dispersal ability or the dispersal efficiency of populations and species. At the inter-specific level, only the dispersal ability showed the signature of a phylogenetic signal while neither the dispersal propensity nor the dispersal efficiency did. At the within-species level, the partitioning of dispersal diversity showed that dispersal was variable or highly variable among populations: intra-specific variability represented from 11% to 133% of inter-specific variability in dispersal metrics. This finding shows that dispersal variation is far from negligible in the wild. Understanding the processes behind this high within-species variation should allow us to properly account for dispersal in demographic models. Accordingly, to encompass the within species variability in life histories the use of more than one value per trait per species should be encouraged in the construction of databases aiming at being sources for modelling purposes

    Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation

    Get PDF
    Both the environment and the spatial configuration of habitat patches are important factors that shape community composition and affect species diversity patterns. Species have traits that allow them to respond to their environment. Our current knowledge on environment to species traits relationships is limited in spite of its potential importance for understanding community assembly and ecosystem function. The aim of our study was to examine the relative roles of environmental and spatial variables for the small-scale variation in Collembola (springtail) communities in a Dutch salt marsh. We used a trait-based approach in combination with spatial statistics and variance partitioning, between environmental and spatial variables, to examine the important ecological factors that drive community composition. Turnover of trait diversity across space was lower than for species diversity. Most of the variation in community composition was explained by small-scale spatial variation in topography, on a scale of 4-6 m, most likely because it determines the effect of inundation, which restricts where habitat generalists can persist. There were only small pure spatial effects on species and trait diversity, indicating that biotic interactions or dispersal limitation probably were less important for structuring the community at this scale. Our results suggest that for springtails, life form (i.e. whether they live in the soil or litter or on the surface/in vegetation) is an important and useful trait to understand community assembly. Hence, using traits in addition to species identity when analysing environment-organism relationships results in a better understanding of the factors affecting community composition

    NEW OBJECTIVE METHOD FOR CALCULATING FIDELITY. EXAMPLE: THE ILLYRIAN BEECHWOODS

    No full text
    The concept of fidelity and using character species has main importance in the methodics of Zürich-Montpellier phytosociological school. In spite of their long history and importance only few of papers study this question from methodical point of view. In this paper the fidelity concept and measures are shortly rewieved and Juhász-Nagy’s unfortunately not well-known fidelity concept is reconsidered. Information statistical (G2) functions are proposed to measure the three forms of fidelity. On the basis of this concept we suggest to distinguish faithful and character species. The application of new method is showed by an example: the Illyrian beechwoods

    Patterns of plant trait-environment relationships along a forest succession chronosequence

    No full text
    Land-use change due to socioeconomic factors leads to the abandonment of traditional intensive coppice management in large areas of the mountainous landscapes of the Apennines (Italy). In this study we explored the multivariate relationship between plant species traits, stage of forest succession and environmental gradients. We focused on community-level patterns in plant traits of the vegetation of beech forest understory along the regeneration chronosequence initiated after cessation of coppicing. We hypothesized that the correlations between the traits and environmental factors should increase with succession age due to the decreasing role of chance. Landscape-level heterogeneity, i.e. changing elevation, slope, exposition, bedrock and forest stand age was assessed using a stratified random sampling design. Sixty sites were sampled for stand structure and species composition. We focused on 14 plant traits related to persistence, growth and dispersal. The recently developed data-analytical method, Model-Based Recursive Partitioning, was used to disentangle the relationships between patterns of plant traits and environmental gradients.About half (seven) of the studied plant traits showed significant correlations with succession stand age, elevation, inclination, heat index and bedrock. Contrary to the low number of trait–environment correlations in early succession, eight traits showed significant relationships with one or more abiotic factors in older stages of the post-coppice development. Stand age had the highest independent explanatory power, explaining 40% of variance of SLA, more than 17% of variance of short-distance seed dispersal and more than 15% of variance of both long-term connection and extensive perennial root. Among the other abiotic factors, elevation explained 27% of variance of SLA, inclination explained 6–8% of variance of long-term connection, extensive perennial root, thickening and large bud bank. The observed trait–environmental relationship is assumed to be driven by various environmental factors operating at various levels of complexity. While forest succession in relatively homogeneous landscapes might be driven mainly by environmental factors related to forest succession itself and associated abiotic changes (such as changes in light and soil moisture patterns), in heterogeneous landscapes the succession pathways may be structured by landscape-level environmental factors such as inclination. However, in the present study, forest stand age had the highest explanatory power for most of the investigated traits, supporting the assumption of the overall strong impact of succession-driven environmental factors in trait–environment relationships

    Functional diversity: back to basics and looking forward

    Full text link
    Functional diversity is a component of biodiversity that generally concerns the range of things that organisms do in communities and ecosystems. Here, we review how functional diversity can explain and predict the impact of organisms on ecosystems and thereby provide a mechanistic link between the two. Critical points in developing predictive measures of functional diversity are the choice of functional traits with which organisms are distinguished, how the diversity of that trait information is summarized into a measure of functional diversity, and that the measures of functional diversity are validated through quantitative analyses and experimental tests. There is a vast amount of trait information available for plant species and a substantial amount for animals. Choosing which traits to include in a particular measure of functional diversity will depend on the specific aims of a particular study. Quantitative methods for choosing traits and for assigning weighting to traits are being developed, but need much more work before we can be confident about trait choice. The number of ways of measuring functional diversity is growing rapidly. We divide them into four main groups. The first, the number of functional groups or types, has significant problems and researchers are more frequently using measures that do not require species to be grouped. Of these, some measure diversity by summarizing distances between species in trait space, some by estimating the size of the dendrogram required to describe the difference, and some include information about species' abundances. We show some new and important differences between these, as well as what they indicate about the responses of assemblages to loss of individuals. There is good experimental and analytical evidence that functional diversity can provide a link between organisms and ecosystems but greater validation of measures is required. We suggest that non-significant results have a range of alternate explanations that do not necessarily contradict positive effects of functional diversity. Finally, we suggest areas for development of techniques used to measure functional diversity, highlight some exciting questions that are being addressed using ideas about functional diversity, and suggest some directions for novel research

    Forest type interacts with milkweed invasion to affect spider communities

    Get PDF
    Abstract Non-native tree plantations constitute a large part of forestation worldwide. Plantations are prone to invasion by exotic herbaceous plant species due to habitat properties, including understory vegetation structure. We established 40 sampling sites in 10 plantation forests. Sites were selected according to tree species (native poplar forests and exotic pine plantations) and common milkweed (Asclepias syriaca) density (invaded and non-invaded sites) in a full factorial design. We collected spiders with pitfall traps. We found a significant effect of A. syriaca invasion on spider functional diversity (Rao's quadratic entropy), with invaded sites having a lower functional diversity than non-invaded sites. A larger effect of invasion with A. syriaca on the RaoQ of spiders was observed in pine compared to poplar plantations. Spider species were larger, and web-building spiders were more frequent in poplar forests than in pine plantations. We found no effect of A. syriaca invasion on species richness or abundance of spiders. Species composition of spider assemblages in the two forest types was clearly separated according to non-metric multidimensional scaling. We identified seven species associated with pine plantations and six species associated with poplar plantations. The similar species richness and the higher functional diversity of non-invaded sites suggested that these trait states were less similar than invaded sites and that functionally different species were present. In contrast, the invaded sites had lower functional diversities and thus more uniform trait state compositions, suggesting that environmental filtering played an important role in species sorting, making invaded plantations low-quality secondary habitats for the original spider fauna
    corecore