8,773 research outputs found

    Incompressible viscous flow near the leading edge of a flat plate admitting slip

    Get PDF
    The shear stress at the leading edge, calculated on basis of the Navier-Stokes equations and the no-slip boundary condition, approaches infinity. However, taking into account the mean free path of the molecules, which implies admitting a certain slip, the shear stress becomes inversely proportional to the square root of the Knudsen number κ if κ→0. κ is defined as the ratio between the mean free path and the viscous length. The new boundary condition modifies the shear stress only within the Knudsen region of which the size is of the order of 3 to 4 times the mean free path.

    Caloric stimulation of ampullar receptors: a new method to produce mechanically-evoked responses in frog semicircular canals

    Get PDF
    A microthermistor positioned close to the exposed posterior semicircular canal in isolated labyrinth preparations of the frog was used to stimulate the sensory organ. Our results indicated that, depending on the position of the heater, the induced endolymphatic convection currents may result in either excitatory or inhibitory cupular deflections and thus in a modulation of ampullar receptor resting activity. Other possible thermal-dependent mechanisms, such as a direct action of the stimulus on vestibular sensors or endolymphatic volume changes, had, in the present experimental conditions, a minor role. Caloric stimulation could therefore represent a novel method to stimulate the semicircular canals 'in situ'

    The route to solve the interplay between inflammation, angiogenesis and anti-cancer immune response

    Get PDF
    Even though the crucial role played by inflammation in cancer development and progression was first hypothesized by Rudolf Virchow at the beginning of the nineteenth century, only recently inflammation has been recognized as a hallmark of cance

    Cyclooxygenase-2 inhibitors. 1,5-diarylpyrrol-3-acetic esters with enhanced inhibitory activity toward cyclooxygenase-2 and improved cyclooxygenase-2/cyclooxygenase-1 selectivity.

    Get PDF
    he important role of cyclooxygenase-2 (COX-2) in the pathogenesis of inflammation and side effect limitations of current COX-2 inhibitor drugs illustrates a need for the design of new compounds based on alternative structural templates. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, along with their inhibitory activity toward COX enzymes. Several compounds proved to be highly selective COX-2 inhibitors and their affinity data were rationalized through docking simulations. In this paper, we describe the synthesis of new 1,5-diarylpyrrole derivatives that were assayed for their in vitro inhibitory effects toward COX isozymes. Among them, the ethyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1-[3-fluorophenyl]-1H-pyrrol-3- acetate (1d), which was the most potent and COX-2 selective compound, also showed a very interesting in vivo anti-inflammatory and analgesic activity, laying the foundations for developing new lead compounds that could be effective agents in the armamentarium for the management of inflammation and pain

    Control of sucker growth on Vitis vinifera cv. Merlot with NAA derivatives

    Get PDF
    Six NAA esters (three known, three newly synthesized) were tested for the grapevine sucker control. Good results were achieved by E4, E5, E9 (8 % concentration) but E3 presented solubility problems. Suckering was reduced also in the second year, without repeating the treatment

    Use of biochar as filler for biocomposite blown films: Structure-processing-properties relationships

    Get PDF
    In this work, biocomposite blown films based on poly(butylene adipate-co-terephthalate) (PBAT) as biopolymeric matrix and biochar (BC) as filler were successfully fabricated. The materials were subjected to a film-blowing process after being compounded in a twin-screw extruder. The preliminary investigations conducted on melt-mixed PBAT/BC composites allowed PBAT/BC 5% and PBAT/BC 10% to be identified as the most appropriate formulations to be processed via film blowing. The blown films exhibited mechanical performances adequate for possible application as film for packaging, agricultural, and compost bags. The addition of BC led to an improvement of the elastic modulus, still maintaining high values of deformation. Water contact angle measurements revealed an increase in the hydrophobic behavior of the biocomposite films compared to PBAT. Additionally, accelerated degradative tests monitored by tensile tests and spectroscopic analysis revealed that the filler induced a photo-oxidative resistance on PBAT by delaying the degradation phenomena

    OSAnalyzer: A Bioinformatics Tool for the Analysis of Gene Polymorphisms Enriched with Clinical Outcomes

    Get PDF
    Background: The identification of biomarkers for the estimation of cancer patients\u2019 survival is a crucial problem in modern oncology. Recently, the Affymetrix DMET (Drug Metabolizing Enzymes and Transporters) microarray platform has offered the possibility to determine the ADME (absorption, distribution, metabolism, and excretion) gene variants of a patient and to correlate them with drug-dependent adverse events. Therefore, the analysis of survival distribution of patients starting from their profile obtained using DMET data may reveal important information to clinicians about possible correlations among drug response, survival rate, and gene variants. Methods: In order to provide support to this analysis we developed OSAnalyzer, a software tool able to compute the overall survival (OS) and progression-free survival (PFS) of cancer patients and evaluate their association with ADME gene variants. Results: The tool is able to perform an automatic analysis of DMET data enriched with survival events. Moreover, results are ranked according to statistical significance obtained by comparing the area under the curves that is computed by using the log-rank test, allowing a quick and easy analysis and visualization of high-throughput data. Conclusions: Finally, we present a case study to highlight the usefulness of OSAnalyzer when analyzing a large cohort of patient

    Bionanocomposite blown films: Insights on the rheological and mechanical behavior

    Get PDF
    In this work, bionanocomposites based on two different types of biopolymers belonging to the MaterBi® family and containing two kinds of modified nanoclays were compounded in a twinscrew extruder and then subjected to a film blowing process, aiming at obtaining sustainable films potentially suitable for packaging applications. The preliminary characterization of the extruded bionanocomposites allowed establishing some correlations between the obtained morphology and the material rheological and mechanical behavior. More specifically, the morphological analysis showed that, regardless of the type of biopolymeric matrix, a homogeneous nanofiller dispersion was achieved; furthermore, the established biopolymer/nanofiller interactions caused a restrain of the dynamics of the biopolymer chains, thus inducing a significant modification of the material rheological response, which involves the appearance of an apparent yield stress and the amplification of the elastic feature of the viscoelastic behavior. Besides, the rheological characterization under non-isothermal elongational flow revealed a marginal effect of the embedded nanofillers on the biopolymers behavior, thus indicating their suitability for film blowing processing. Additionally, the processing behavior of the bionanocomposites was evaluated and compared to that of similar systems based on a low-density polyethylene matrix: this way, it was possible to identify the most suitable materials for film blowing operations. Finally, the assessment of the mechanical properties of the produced blown films documented the potential exploitation of the selected materials for packaging applications, also at an industrial level

    First determination of the one-proton induced Non-Mesonic Weak Decay width of p-shell {\Lambda}-Hypernuclei

    Get PDF
    Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained from single proton spectra, Gamma_2N/Gamma_p = 0.50 +/- 0.24, and from neutron and proton coincidence spectra, Gamma_2N/Gamma_p = 0.36 +/- 0.14stat +0.05sys -0.04sys , in full agreement with previously published ones. With these values, a method is developed to extract the one-proton induced decay width in units of the free Lambda decay width, Gamma_p/Gamma_Lambda, without resorting to Intra Nuclear Cascade models but by exploiting only experimental data, under the assumption of a linear dependence on A of the Final State Interaction contribution. This is the first systematic determination ever done and it agrees within the errors with recent theoretical calculations.Comment: 16 pages, 3 figures, 2 table
    • …
    corecore