30 research outputs found

    Ancient paralogy in the cpDNA trnL-F region in Annonaceae : implications for plant molecular systematics

    No full text
    The plastid trnL-F region has proved useful in molecular phylogenetic studies addressing diverse evolutionary questions from biogeographic history to character evolution in a broad range of plant groups. An important assumption for phylogenetic reconstruction is that data used in combined analyses contain the same phylogenetic signal. The trnL-F region is often used in combined analyses of multiple chloroplast markers. These markers are assumed to contain congruent phylogenetic signal due to lack of recombination. Here we show that trnL-F sequences display a phylogenetic signal conflicting with that of other chloroplast markers in Annonaceae, and we demonstrate that this conflict results from ancient paralogy. TrnL-F copy 2 diverged from trnL-F copy I (as used in family-wide phylogenetic analyses) in a direct ancestor of the Annonaceae. Although this divergence dates back 88 million years or more, the exons of both copies appear to be intact. In this case, assuming that (putative) chloroplast markers contain the same phylogenetic signal results in an incorrect topology and an incorrect estimate of ages. Our study demonstrates that researchers should be cautious when interpreting gene phylogenies, irrespective of the genome from which they are presumed to have been sampled

    A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia

    Get PDF
    A tospovirus causing necrotic streaks on leaves was isolated from Alstroemeria sp. in Colombia. Infected samples reacted positively with tomato spotted wilt virus (TSWV) antiserum during preliminary serological tests. Further analysis revealed a close serological relationship to tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV). A major part of the S-RNA segment, encompassing the nucleocapsid (N) protein gene, the 5′ untranslated region and a part of the intergenic region 3′ of the N gene, was cloned and sequenced. The deduced N protein sequence showed highest amino acid identity (82%) to that of TCSV, indicating that the virus represents a new tospovirus species, for which the name Alstroemeria necrotic streak virus (ANSV) is coined. Phylogenetic analysis based on the N protein sequence revealed that this Alstroemeria-infecting tospovirus clustered with tospoviruses from the American continent. Frankliniella occidentalis was identified as potential vector species for ANSV

    Revisiting a pollen-transmitted ilarvirus previously associated with angular mosaic of grapevine

    Get PDF
    We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013-2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV

    Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis

    Get PDF
    The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties

    Revision of the African genus Hexalobus (Annonaceae)

    No full text
    The genus Hexalobus consists of five species characterized by six basally fused petal lobes that are transversally folded in bud, which is unique within Annonaceae. The genus is widespread across tropical Africa occurring in rain forest, savanna, and woodland. The species H. callicarpus, occurring in Madagascar, is excluded from Hexalobus, so the genus is now restricted to continental Africa. The present revision provides a synthesis of previously published information and discussions on morphology, taxonomy, phylogeny, and palynology. Conservation status assessments are provided for each species, as well as a diagnostic key and detailed species descriptions. Furthermore, four species are illustrated and all species are mapped

    African eggplant-associated virus: Characterization of a novel tobamovirus identified from Solanum macrocarpon and assessment of its potential impact on tomato and pepper crops

    No full text
    A novel tobamovirus was identified in a fruit of Solanum macrocarpon imported into the Netherlands in 2018. This virus was further characterized in terms of host range, pathotype and genomic properties, because many tobamoviruses have the potential to cause severe damage in important crops. In the original fruit, two different genotypes of the novel virus were present. The virus was able to infect multiple plant species from the Solanaceae family after mechanical inoculation, as well as a member of the Apiaceae family. These species included economically important crops such as tomato and pepper, as well as eggplant and petunia. Both tomato and pepper germplasm were shown to harbor resistance against the novel virus. Since most commercial tomato and pepper varieties grown in European greenhouses harbor these relevant resistances, the risk of infection and subsequent impact on these crops is likely to be low in Europe. Assessment of the potential threat to eggplant, petunia, and other susceptible species needs further work. In conclusion, this study provides a first assessment of the potential phytosanitary risks of a newly discovered tobamovirus, which was tentatively named African eggplant-associated virus

    First Expansion of the Public Tomato Brown Rugose Fruit Virus (ToBRFV) Nextstrain Build; Inclusion of New Genomic and Epidemiological Data

    No full text
    Tomato brown rugose fruit virus (ToBRFV) is a tobamovirus that was first detected in Israel and Jordan following an outbreak of a new disease infecting tomato in 2014. Since then, the virus has been reported from all continents except Oceania and Antarctica. In response to the first finding of the virus in The Netherlands, the Dutch National Plant Protection Organization created a ToBRFV Nextstrain build (v1). In this report, we announce 47 new (near) complete ToBRFV genomes and the generation of the new ToBRFV Nextstrain (v2) build containing 118 ToBRFV genomes with associated geographic and epidemiological data. Examples of utilization of the genomic sequences are presented, and we report the first sequence from South America and present a novel hypothesis on the possible ToBRFV center of origin.[Graphic: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    African eggplant-associated virus: Characterization of a novel tobamovirus identified from Solanum macrocarpon and assessment of its potential impact on tomato and pepper crops.

    No full text
    A novel tobamovirus was identified in a fruit of Solanum macrocarpon imported into the Netherlands in 2018. This virus was further characterized in terms of host range, pathotype and genomic properties, because many tobamoviruses have the potential to cause severe damage in important crops. In the original fruit, two different genotypes of the novel virus were present. The virus was able to infect multiple plant species from the Solanaceae family after mechanical inoculation, as well as a member of the Apiaceae family. These species included economically important crops such as tomato and pepper, as well as eggplant and petunia. Both tomato and pepper germplasm were shown to harbor resistance against the novel virus. Since most commercial tomato and pepper varieties grown in European greenhouses harbor these relevant resistances, the risk of infection and subsequent impact on these crops is likely to be low in Europe. Assessment of the potential threat to eggplant, petunia, and other susceptible species needs further work. In conclusion, this study provides a first assessment of the potential phytosanitary risks of a newly discovered tobamovirus, which was tentatively named African eggplant-associated virus

    Ancient paralogy in the cpDNA trnL-F region in Annonaceae : implications for plant molecular systematics

    No full text
    The plastid trnL-F region has proved useful in molecular phylogenetic studies addressing diverse evolutionary questions from biogeographic history to character evolution in a broad range of plant groups. An important assumption for phylogenetic reconstruction is that data used in combined analyses contain the same phylogenetic signal. The trnL-F region is often used in combined analyses of multiple chloroplast markers. These markers are assumed to contain congruent phylogenetic signal due to lack of recombination. Here we show that trnL-F sequences display a phylogenetic signal conflicting with that of other chloroplast markers in Annonaceae, and we demonstrate that this conflict results from ancient paralogy. TrnL-F copy 2 diverged from trnL-F copy 1 (as used in family-wide phylogenetic analyses) in a direct ancestor of the Annonaceae. Although this divergence dates back 88 million years or more, the exons of both copies appear to be intact. In this case, assuming that (putative) chloroplast markers contain the same phylogenetic signal results in an incorrect topology and an incorrect estimate of ages. Our study demonstrates that researchers should be cautious when interpreting gene phylogenies, irrespective of the genome from which they are presumed to have been sampled

    Symptoms on test plants upon inoculation with the novel tobamovirus.

    No full text
    a) Chenopodium album: local chlorotic lesions, b) Capsicum annuum “Westlandse Grote Zoete”: systemic chlorosis, c) Datura stramonium: local necrotic lesions, d) Nicotiona glutinosa: local necrotic lesions, e) Nicotiana hesperis “67A”: systemic chlorosis, growth inhibition, rugosity, f) Nicotiana occidentalis “P1”: systemic chlorosis, growth inhibition, leaf curling, rugosity, g) Nicotiana tabacum “White Burley”: local chlorotic lesions, h) Petunia hybrida: local necrotic lesions, systemic leaf curling, growth inhibition, rugosity, i) Solanum macrocarpon: systemic chlorotic vein banding, j) Solanum nigrum: systemic chlorotic lesions, rugosity.</p
    corecore