15 research outputs found

    Mutation study of Spanish patients with Hereditary Hemorrhagic Telangiectasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant and age-dependent vascular disorder characterised mainly by mutations in the Endoglin (ENG) or activin receptor-like kinase-1 (ALK1, ACVRL1) genes.</p> <p>Methods</p> <p>Here, we have identified 22 ALK1 mutations and 15 ENG mutations, many of which had not previously been reported, in independent Spanish families afflicted with HHT.</p> <p>Results</p> <p>We identified mutations in thirty-seven unrelated families. A detailed analysis of clinical symptoms was recorded for each patient analyzed, with a higher significant presence of pulmonary arteriovenous malformations (PAVM) in HHT1 patients over HHT2. Twenty-two mutations in ALK1 and fifteen in ENG genes were identified. Many of them, almost half, represented new mutations in ALK1 and in ENG. Missense mutations in ENG and ALK1 were localized in a tridimensional protein structure model.</p> <p>Conclusion</p> <p>Overall, ALK1 mutations (HHT2) were predominant over ENG mutations (HHT1) in our Spanish population, in agreement with previous data from our country and other Mediterranean countries (France, Italy), but different to Northern Europe or North America. There was a significant increase of PAVM associated with HHT1 over HHT2 in these families.</p

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    13 páginas,1 figura, 3 tablas, 1 apéndice. Se extraen los autores pertenecientes a The CIBERER network que trabajan en Centros del CSIC del Appendix ACIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research.This study has been funded by Instituto de Salud Carlos III (ISCIII) and Spanish Ministry of Science and InnovationPeer reviewe

    Safety of thalidomide and bevacizumab in patients with hereditary hemorrhagic telangiectasia

    No full text
    Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a multisystemic inherited vascular dysplasia that leads to nosebleeds and visceral arteriovenous malformations (AVMs). Anti-angiogenic drugs thalidomide and bevacizumab have been increasingly used off-label with variable results. The HHT working group within the ERN for Rare Multisystemic Vascular Diseases (VASCERN), developed a questionnaire-based retrospective capture of adverse events (AEs) classified using the Common Terminology Criteria for Adverse Events. Results Sixty-nine HHT patients received bevacizumab, 37 (50.6%) for high output cardiac failure/hepatic AVMs, and 32 (49.4%) for bleeding; the 69 patients received bevacizumab for a mean of 11 months for a total of 63.8 person/years treatment. 67 received thalidomide, all for epistaxis and/or gastrointestinal bleeding; they received thalidomide for a mean of 13.4 months/patient for a total of 75 person/years treatment. AEs were reported in 58 patients, 33 with bevacizumab, 37 with thalidomide. 32 grade 1–3 AEs related to bevacizumab were reported with an average incidence rate of 50 per 100 person-years. 34 grade 1–3 AEs related to thalidomide were reported with an average incidence rate of 45.3 per 100 person-years. Bevacizumab AEs were more common in females (27 AEs in 46 women) than males (6 in 23, p < 0.001). Thalidomide AEs occurred at more similar rates in males (25 AEs in 41 men, 60.9%) and females (12 in 26 (46.2%), but were more common in ENG patients (17 in 17) than in ACVRL1 (14 in 34, p < 0.0001). For bevacizumab, the most common reports were of joint pains (7/69, 10%), headache (3/69, 4.4%) and proteinuria (2/69, 3%), and for thalidomide, peripheral neuropathy (12/67, 18%); drowsiness (8/67, 12%); and dizziness (6/67, 9%). Fatal adverse events were more common in males (p = 0.009), and in patients with ENG pathogenic variants (p = 0.012). One fatal AE was possibly related to bevacizumab (average incidence rate: 1.5 per 100 person-years); 3 fatal AEs were possibly related to thalidomide (average incidence rate: 4 per 100 person-years). Conclusions With potential increase in use of Bevacizumab and Thalidomide in HHT patients, data presented support appropriate weighing of the toxicities which can arise in HHT settings and the practice recommendations for their prevention and management

    MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells.

    Get PDF
    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-beta pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-beta balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype
    corecore