1,041 research outputs found

    Vortex-Antivortex Lattice in Ultra-Cold Fermi Gases

    Full text link
    We discuss ultra-cold Fermi gases in two dimensions, which could be realized in a strongly confining one-dimensional optical lattice. We obtain the temperature versus effective interaction phase diagram for an s-wave superfluid and show that, below a certain critical temperature T_c, spontaneous vortex-antivortex pairs appear for all coupling strengths. In addition, we show that the evolution from weak to strong coupling is smooth, and that the system forms a square vortex-antivortex lattice at a lower critical temperature T_M.Comment: Submitted to Physical Review Letter

    Effect of weathering conditions on the degradation behaviour of ABS

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - Bolsa de Doutoramento SFRH/BDE/15657/2007Poliversal – Plásticos e Tecnologia, S.A

    Preparation of biodegradable materials by reactive extrusion

    Get PDF
    This work aimed to prepare biodegradable polymeric materials based on blends of a synthetic high density polyethylene (HDPE) and biodegradable polymers such as polylactic acid (PCL) and poly(caprolactone) (PLA), in a co-rotating twin-screw extruder. A polyethylene modified with maleic anhydride was used as compatibiliser. The mechanical results showed that the addition of PLA improves the blends stiffness while the addition of PCL leads to materials with a greater elongation at break and a lower Young modulus. This feature is related with the mechanical properties of each material as well as the adhesion between them. Concerning the biodegradability tests, it was found that HDPE/PCL blend presents the highest degree of biodegradability

    Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres.

    Get PDF
    Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in a polyvinylidene fluoride (PVDF) polymer-fibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres is ∼325 nm, independent of the nanoparticle content, and the amount of the crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezoelectric response of these electroactive nanofibres is modified by an applied magnetic field, thus evidencing the magnetoelectric character of the CFO/PVDF 0-1 composites.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST C/FIS/UI607/2014 and PTDC/CTM NAN/112574/2009. R. G., P. M., V. S., G. B. and S. L. M. acknowledge support from “Matepro – Optimizing Materials and Processes” (ref. NORTE-07-0124-FEDER-000037), co funded by “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte, QREN, FEDER). P. M. and R. Gonçalves acknowledges also support from FCT (SFRH/BPD/96227/2013 and SFRH/BD/88397/2012 grants respectively). X. M. acknowledges support from the Ramón y Cajal (RYC) Programme (Spanish MEC) and the Royal Society.This is the accepted manuscript. The final version is available at http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/c5nr00453e#!divAbstract
    corecore