47 research outputs found

    Alignment and Composition of Laminin-Polycaprolactone Nanofiber Blends Enhance Peripheral Nerve Regeneration

    Get PDF
    Peripheral nerve transection occurs commonly in traumatic injury, causing deficits distal to the injury site. Conduits for repair currently on the market are hollow tubes; however, they often fail due to slow regeneration over long gaps. To facilitate increased regeneration speed and functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in regeneration. To that end, laminin and lamininpolycaprolactone (PCL) blend nanofibers were fabricated to mimic peripheral nerve basement membrane. In vitro assays established 10% (wt) laminin content is sufficient to retain neurite-promoting effects of laminin. In addition, modified collector plate design to introduce an insulating gap enabled the fabrication of aligned nanofibers. The effects of laminin content and fiber orientation were evaluated in rat tibial nerve defect model. The lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment to assess changes in motor and sensory recovery. Retrograde nerve conduction speed at 6 weeks was significantly faster in animals receiving aligned nanofiber conduits than in those receiving random nanofiber conduits. Animals receiving nanofiber-filled conduits showed some conduction in both anterograde and retrograde directions, whereas in animals receiving hollow conduits, no impulse conduction was detected. Aligned PCL nanofibers significantly improved motor function; aligned laminin blend nanofibers yielded the best sensory function recovery. In both cases, nanofiber-filled conduits resulted in better functional recovery than hollow conduits. These studies provide a firm foundation for the use of naturalsynthetic blend electrospun nanofibers to enhance existing hollow nerve guidance conduits

    Evaluating Angiogenic Potential of Small Molecules Using Genetic Network Approaches

    No full text
    Control of microvascular network growth is critical to treatment of ischemic tissue diseases and enhancing regenerative capacity of tissue engineering implants. Conventional therapeutic strategies for inducing angiogenesis aim to deliver one or more pro-angiogenic cytokines or to over-express known pro-angiogenic genes, but seldom address potential compensatory or cooperative effects between signals and the overarching signaling pathways that determine successful outcomes. An emerging grand challenge is harnessing the expanding knowledge base of angiogenic signaling pathways toward development of successful new therapies. We previously performed drug optimization studies by various substitutions of a 2-(2,6-dioxo-3-piperidyl)isoindole-1,3-dione scaffold to discover novel bioactive small molecules capable of inducing growth of microvascular networks, the most potent of which we termed phthalimide neovascularization factor 1 (PNF1, formerly known as SC-3-149). We then showed that PNF-1 regulates the transcription of signaling molecules that are associated with vascular initiation and maturation in a time-dependent manner through a novel pathway compendium analysis in which transcriptional regulatory networks of PNF-1-stimulated microvascular endothelial cells are overlaid with literature-derived angiogenic pathways. In this study, we generated three analogues (SC-3-143, SC-3-263, SC-3-13) through systematic transformations to PNF1 to evaluate the effects of electronic, steric, chiral, and hydrogen bonding changes on angiogenic signaling. We then expanded our compendium analysis toward these new compounds. Variables obtained from the compendium analysis were then used to construct a PLSR model to predict endothelial cell proliferation. Our combined approach suggests mechanisms of action involving suppression of VEGF pathways through TGF-ÎČ and NR3C1 network activation. Keywords: PNF-1; Pathway compendium analysis; Phthalimide compoundsNational Institutes of Health (U.S.) (Grant R01-DE019935)National Institutes of Health (U.S.) (Grant R01-AR056445

    Harnessing systems biology approaches to engineer functional microvascular networks

    Get PDF
    This is a copy of an article published in Tissue Engineering Part B. © 2010 Mary Ann Liebert, Inc.; Tissue Engineering Part B is available online at: http://online.liebertpub.comDOI: 10.1089/ten.teb.2009.0611Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery

    Identifying dysregulated immune cell subsets following volumetric muscle loss with pseudo-time trajectories

    No full text
    Abstract Volumetric muscle loss (VML) results in permanent functional deficits and remains a substantial regenerative medicine challenge. A coordinated immune response is crucial for timely myofiber regeneration, however the immune response following VML has yet to be fully characterized. Here, we leveraged dimensionality reduction and pseudo-time analysis techniques to elucidate the cellular players underlying a functional or pathological outcome as a result of subcritical injury or critical VML in the murine quadriceps, respectively. We found that critical VML resulted in a sustained presence of M2-like and CD206hiLy6Chi ‘hybrid’ macrophages whereas subcritical defects resolved these populations. Notably, the retained M2-like macrophages from critical VML injuries presented with aberrant cytokine production which may contribute to fibrogenesis, as indicated by their co-localization with fibroadipogenic progenitors (FAPs) in areas of collagen deposition within the defect. Furthermore, several T cell subpopulations were significantly elevated in critical VML compared to subcritical injuries. These results demonstrate a dysregulated immune response in critical VML that is unable to fully resolve the chronic inflammatory state and transition to a pro-regenerative microenvironment within the first week after injury. These data provide important insights into potential therapeutic strategies which could reduce the immune cell burden and pro-fibrotic signaling characteristic of VML
    corecore