79 research outputs found

    Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de‐differentiated state

    Get PDF
    Abstract Treatment of BRAF‐mutant melanomas with MAP kinase pathway inhibitors is paradigmatic of the promise of precision cancer therapy but also highlights problems with drug resistance that limit patient benefit. We use live‐cell imaging, single‐cell analysis, and molecular profiling to show that exposure of tumor cells to RAF/MEK inhibitors elicits a heterogeneous response in which some cells die, some arrest, and the remainder adapt to drug. Drug‐adapted cells up‐regulate markers of the neural crest (e.g., NGFR), a melanocyte precursor, and grow slowly. This phenotype is transiently stable, reverting to the drug‐naïve state within 9 days of drug withdrawal. Transcriptional profiling of cell lines and human tumors implicates a c‐Jun/ECM/FAK/Src cascade in de‐differentiation in about one‐third of cell lines studied; drug‐induced changes in c‐Jun and NGFR levels are also observed in xenograft and human tumors. Drugs targeting the c‐Jun/ECM/FAK/Src cascade as well as BET bromodomain inhibitors increase the maximum effect (E max) of RAF/MEK kinase inhibitors by promoting cell killing. Thus, analysis of reversible drug resistance at a single‐cell level identifies signaling pathways and inhibitory drugs missed by assays that focus on cell populations

    Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism

    Get PDF
    Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multisubstrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structureguided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of similar to 500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A

    Brief report:effects of sensory sensitivity and intolerance of uncertainty on anxiety in mothers of children with autism spectrum disorder

    Get PDF
    This study examined the relations between anxiety and individual characteristics of sensory sensitivity (SS) and intolerance of uncertainty (IU) in mothers of children with ASD. The mothers of 50 children completed the Hospital Anxiety and Depression Scale, the Highly Sensitive Person Scale and the IU Scale. Anxiety was associated with both SS and IU and IU was also associated with SS. Mediation analyses showed direct effects between anxiety and both IU and SS but a significant indirect effect was found only in the model in which IU mediated between SS. This is the first study to characterize the nature of the IU and SS interrelation in predicting levels of anxiety

    Prisoners’ Families’ Research: Developments, Debates and Directions

    Get PDF
    After many years of relative obscurity, research on prisoners’ families has gained significant momentum. It has expanded from case-oriented descriptive analyses of family experiences to longitudinal studies of child and family development and even macro analyses of the effects on communities in societies of mass incarceration. Now the field engages multi-disciplinary and international interest although it arguably still remains on the periphery of mainstream criminological, psychological and sociological research agendas. This chapter discusses developments in prisoners’ families’ research and its positioning in academia and practice. It does not aim to provide an all-encompassing review of the literature rather it will offer some reflections on how and why the field has developed as it has and on its future directions. The chapter is divided into three parts. The first discusses reasons for the historically small body of research on prisoners’ families and for the growth in research interest over the past two decades. The second analyses patterns and shifts in the focus of research studies and considers how the field has been shaped by intersecting disciplinary interests of psychology, sociology, criminology and socio-legal studies. The final part reflects on substantive and ethical issues that are likely to shape the direction of prisoners’ families’ research in the future

    Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia.

    Get PDF
    Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain

    Application of B cell immortalization for the isolation of antibodies and B cell clones from vaccine and infection settings

    Get PDF
    The isolation and characterization of neutralizing antibodies from infection and vaccine settings informs future vaccine design, and methodologies that streamline the isolation of antibodies and the generation of B cell clones are of great interest. Retroviral transduction to express Bcl-6 and Bcl-xL and transform primary B cells has been shown to promote long-term B cell survival and antibody secretion in vitro, and can be used to isolate antibodies from memory B cells. However, application of this methodology to B cell subsets from different tissues and B cells from chronically infected individuals has not been well characterized. Here, we characterize Bcl-6/Bcl-xL B cell immortalization across multiple tissue types and B cell subsets in healthy and HIV-1 infected individuals, as well as individuals recovering from malaria. In healthy individuals, naïve and memory B cell subsets from PBMCs and tonsil tissue transformed with similar efficiencies, and displayed similar characteristics with respect to their longevity and immunoglobulin secretion. In HIV-1-viremic individuals or in individuals with recent malaria infections, the exhausted CD27-CD21- memory B cells transformed with lower efficiency, but the transformed B cells expanded and secreted IgG with similar efficiency. Importantly, we show that this methodology can be used to isolate broadly neutralizing antibodies from HIV-infected individuals. Overall, we demonstrate that Bcl-6/Bcl-xL B cell immortalization can be used to isolate antibodies and generate B cell clones from different B cell populations, albeit with varying efficiencies

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF
    corecore