16 research outputs found

    Stable Atmospheric Boundary Layers and Diurnal Cycles – Challenges for Weather and Climate Models

    Get PDF
    The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.SB acknowledges the financial support received from the NationalScience Foundation by way of Grant AGS-1122315

    Shear capacity as prognostic for nocturnal boundary layer regimes

    Get PDF
    Field observations and theoretical analysis are used to investigate the appearance of different nocturnal boundary layer regimes. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively ’quiet’ (very stable) boundary layer. A large number of nights (approx. 4500 in total) are analysed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2-3 hours). In contrast, very stable nights reach a steady state much later after a transition period (2-6 hours). During this period turbulence is weak and non-stationary. To characterise the regime a new parameter is introduced: the Shear Capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the Shear Capacity combines flow information with knowledge on the boundary condition. It is shown that the Shear Capacity enables prediction of the flow regimes. The prognostic strength of this non-dimensional parameter appears to outperform the traditional ones like z/L and Ri as regime indicator

    Local characteristics of the nocturnal boundary layer in response to external pressure forcing

    No full text
    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw (The Netherlands). Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin-Obukhov stability parameter (z/L) or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speed are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics, and composite profiles of wind and temperature are systematically investigated. We find that the classification results in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer

    Monitoring van droge depositie op het Speulderbos. Beschrijving van de opstelling en evaluatie van meetmethoden

    No full text
    Dit rapport maakt deel uit van een serie rapporten, die geschreven zijn als afsluiting van de projecten Speuld (RIVM project 722108) en EC LIFE (93/NL/A23/NL/3547). Het rapport bevat een uitgebreide beschrijving van de opstelling voor de continue bepaling (monitoring) van droge depositiefluxen van verzurende componenten in het Speulderbos, en een evaluatie van de instrumenten en van de opstelling als geheel. Ook wordt een gedetailleerde foutenanalyse gegeven van de gas- en deeltjesfluxen die uit de meetgegevens zijn afgeleid, en worden enkele suggesties voor verbeteringen en correctieprocedures voor de fluxberekeningen gedaan. Uit de foutenanalyse volgt dat de fluxen van SO2, NH3 en NO met voldoende nauwkeurigheid kunnen worden bepaald. De onzekerheden in jaargemiddelde fluxen bedragen slechts een paar procent. Voor NOx en NO2 zijn de onzekerheden in uur- en jaargemiddelde fluxen veel groter, vooral door systematische fouten veroorzaakt door interferenties van HNO2, HNO3 and NH3, waardoor de fluxen 50% tot 100% overschat worden. In de toekomst kunnen de onzekerheden aanzienlijk worden gereduceerd door frictiesnelheden en sensibele warmtefluxen te corrigeren voor obstructie van de flow ; door sensibele warmtefluxen te corrigeren voor de invloed van vocht en windsnelheid ; en door gasconcentraties te corrigeren voor drukeffecten en interferenties. Voor dit laatste is het noodzakelijk de concentraties en gradienten van de interfererende componenten ook continu te meten ; eventueel kunnen de gradienten worden geschat uit geparametriseerde depositiesnelheden. De correctieprocedures worden in dit rapport beschreven. De onzekerheden in fluxen van HNO2, HNO3, HCl en deeltjesvormige componenten werden geschat op 30% voor de zure gassen, 40% voor de zure aerosolen en basische kationen en 50% voor de zware metalen. Ze worden vooral bepaald door onzekerheden in geparametriseerde depositiesnelheden.This report is part of a series of reports published to complete the projects Speuld (RIVM project 722108) and EC LIFE (93/NL/A23/NL/3547). The report describes a monitoring system for continuous determination of dry deposition fluxes of acidifying components to the Speulder forest, and evaluates the performance of the several instruments used in the system and of the system as a whole. A detailed error analysis of the gas and particle fluxes derived from the data of the system, and some recommendations for final improvements and flux correction procedures are given as well. The error analysis shows that fluxes of SO2, NH3 and NO can be determined with acceptable accuracy. Systematic errors for NOx and NO2 are large, yielding on the average about 50 to 100% overestimation of the fluxes. These errors are mainly caused by interferences of HNO2, HNO3 and NH3. In future measurements, the systematic errors can be significantly reduced by correcting friction velocities and sensible heat fluxes for flow distortion, correcting sensible heat fluxes for the influence of moisture flux and horizontal wind velocity, and correcting gas concentrations for pressure effects and interferences. The latter requires continuous determination of the interferents concentrations and concentration differences ; the latter might also be estimated from parameterized deposition velocities. The correction procedures are described in this report. The uncertainties in fluxes of HNO2, HNO3 and HCl and particulate compounds were estimated to be 30% for acidic gases, 40% for acidic aerosols and basic cations and 50% for heavy metals. They are mainly a result of uncertainties in parameterized deposition velocities.DGM/L
    corecore