771 research outputs found

    On the harmonic Boltzmannian waves in laser-plasma interaction

    Get PDF
    We study the permanent regimes of the reduced Vlasov-Maxwell system for laser-plasma interaction. A non-relativistic and two different relativistic models are investigated. We prove the existence of solutions where the distribution function is Boltzmannian and the electromagnetic variables are time-harmonic and circularly polarized

    Impact of strong magnetic fields on collision mechanism for transport of charged particles

    Full text link
    One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion is achieved by magnetic confinement i.e., the plasma is confined into a toroidal domain (tokamak) under the action of huge magnetic fields. Several models exist for describing the evolution of strongly magnetized plasmas, most of them by neglecting the collisions between particles. The subject matter of this paper is to investigate the effect of large magnetic fields with respect to a collision mechanism. We consider here linear collision Boltzmann operators and derive, by averaging with respect to the fast cyclotronic motion due to strong magnetic forces, their effective collision kernels

    A Fast Algorithm for Computing the p-Curvature

    Get PDF
    We design an algorithm for computing the pp-curvature of a differential system in positive characteristic pp. For a system of dimension rr with coefficients of degree at most dd, its complexity is \softO (p d r^\omega) operations in the ground field (where ω\omega denotes the exponent of matrix multiplication), whereas the size of the output is about pdr2p d r^2. Our algorithm is then quasi-optimal assuming that matrix multiplication is (\emph{i.e.} ω=2\omega = 2). The main theoretical input we are using is the existence of a well-suited ring of series with divided powers for which an analogue of the Cauchy--Lipschitz Theorem holds.Comment: ISSAC 2015, Jul 2015, Bath, United Kingdo

    Design of waveguides, bends and splitters in photonic crystal slabs with hexagonal holes in a triangular lattice

    Get PDF
    Waveguides in photonic crystal slabs (PCS) can be obtained by omitting a row of holes (W1-waveguides). In general the propagation properties in such waveguides suffer from the unavoidable periodic sidewall corrugation caused by the remaining parts of the crystal. The corrugation acts as a Bragg reflector, causing the occurrence of so-called mini stopbands in the transmission of the waveguide. The effect is quite strong in PCS with circular holes, but it can be significantly reduced if correctly oriented hexagonal holes are used. This so-called hexagon-type PCS allows the design of waveguides, bends and splitters having a relatively high group velocity and a wide transmission window in the PCS stopband for modes having their magnetic field oriented mainly perpendicular to the slab

    The Ising model and Special Geometries

    Full text link
    We show that the globally nilpotent G-operators corresponding to the factors of the linear differential operators annihilating the multifold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model (n≀6n \le 6) are homomorphic to their adjoint. This property of being self-adjoint up to operator homomorphisms, is equivalent to the fact that their symmetric square, or their exterior square, have rational solutions. The differential Galois groups are in the special orthogonal, or symplectic, groups. This self-adjoint (up to operator equivalence) property means that the factor operators we already know to be Derived from Geometry, are special globally nilpotent operators: they correspond to "Special Geometries". Beyond the small order factor operators (occurring in the linear differential operators associated with χ(5) \chi^{(5)} and χ(6) \chi^{(6)}), and, in particular, those associated with modular forms, we focus on the quite large order-twelve and order-23 operators. We show that the order-twelve operator has an exterior square which annihilates a rational solution. Then, its differential Galois group is in the symplectic group Sp(12,C) Sp(12, \mathbb{C}). The order-23 operator is shown to factorize in an order-two operator and an order-21 operator. The symmetric square of this order-21 operator has a rational solution. Its differential Galois group is, thus, in the orthogonal group SO(21,C) SO(21, \mathbb{C}).Comment: 33 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actually diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christol's conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.Comment: 100 page

    Ekonomska analiza razvoja rumunjske crne metalurgije

    Get PDF
    The ferrous metallurgy represents a traditional occupation, being extremely important for the national economy. Romania has gone through all the stages foreseen for the restructuring of this industry in compliance with the provisions of the European Council’s Decision (1999/582/EC) concerning the partnership for the EU adherence, which included a special chapter on ferrous metallurgy, the provisions of the Protocol no. 2 (ECSC), as well as with other significant normative acts subsequently enacted. Following the performed restructuring – privatizations, state allowances, liquidations, re-technologization – the activity of this sector has developed, still being under the potential of the Romanian metallurgic industry. Nowadays, the disadvantages relating to energy intensity and the increased need for imported raw materials are doubled by the difficulties generated by the global crisis.Crna metalurgija je tradicionalna djelatnost i veoma je značajna za nacionalno gospodarstvo. Rumunjska je proĆĄla kroz sve faze predviđene za preustroj te industrije sukladno odredbama Odluke Europskog vijeća (1999/582/EZ) u svezi s partnerstvom za zajedniĆĄtvo EU, ĆĄto je obuhvaćalo i posebno poglavlje o crnoj metalurgiji, te sukladno odredbama Protokola br. 2 (EZUČ – Europska zajednica za ugljen i čelik) kao i drugim značajnim naknadno donesenim normativnim aktima, Nakon obavljena preustroja – privatizacije, drĆŸavnih subvencija, likvidacija, retehnologizacije, razvila se djelatnost ove grane, ali joĆĄ uvijek ispod mogućnosti rumunjske metalurĆĄke industrije. Danas su se zbog teĆĄkoća generiranih od globalne krize udvostručile nepovoljne okolnosti koje se odnose na energijski intenzivne djelatnosti i povećanu potrebu za sirovinama

    Waveguides, bends and Y-junctions with improved transmission and bandwidth in hexagon-type SOI photonic crystal slabs

    Get PDF
    This paper presents novel ways of implementing waveguide components in photonic crystal slabs based on silicon-on-insulator (SOI). The integration platform we consider consists of hexa¬gonal holes arranged in a triangular lattice (‘hexagon-type’ photonic crystal). The waveguides are made of one missing row of holes (W1) with triangular air inclusions symmetrically added on each side of the waveguide. \ud Size and position of these inclusions are tuning parameters for the band diagram and can be used for minimizing the distributed Bragg reflection (DBR) effect. The waveguides show single-mode behavior with reasonably high group velocity and large transmission window, inside the gap between H-like modes**. These waveguides, closely resembling conventional ridge waveguides, can be combined to form efficient bends and Y-junctions. The bends and Y-junctions include intermediate short waveguide sections at half the bend angle playing the role of corner ‘mirrors’. Qualitative design rules were obtained from 2D calculations based on effective index approximation.\u
    • 

    corecore