50 research outputs found

    Excitations of amorphous solid helium

    Full text link
    We present neutron scattering measurements of the dynamic structure factor, S(Q,ω)S(Q,\omega), of amorphous solid helium confined in 47 A˚\AA pore diameter MCM-41 at pressure 48.6 bar. At low temperature, TT = 0.05 K, we observe S(Q,ω)S(Q,\omega) of the confined quantum amorphous solid plus the bulk polycrystalline solid between the MCM-41 powder grains. No liquid-like phonon-roton modes, other sharply defined modes at low energy (ω<\omega< 1.0 meV) or modes unique to a quantum amorphous solid that might suggest superflow are observed. Rather the S(Q,ω)S(Q,\omega) of confined amorphous and bulk polycrystalline solid appear to be very similar. At higher temperature (T>T> 1 K), the amorphous solid in the MCM-41 pores melts to a liquid which has a broad S(Q,ω)S(Q,\omega) peaked near ω≃\omega \simeq 0 characteristic of normal liquid 4^4He under pressure. Expressions for the S(Q,ω)S(Q,\omega) of amorphous and polycrystalline solid helium are presented and compared. In previous measurements of liquid 4^4He confined in MCM-41 at lower pressure the intensity in the liquid roton mode decreases with increasing pressure until the roton vanishes at the solidification pressure (38 bars), consistent with no roton in the solid observed here

    Modeling the wind circulation around mills with a Lagrangian stochastic approach

    Get PDF
    This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. We also present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method

    L'helium trois solide aux tres basses temperatures : etude neutronique

    No full text
    SIGLECNRS T 57540 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    L'hélium trois solide aux très basses températures. Etude neutronique

    No full text
    No abstractPas de résum

    Amorphous solid helium in porous media

    No full text
    International audienc
    corecore