420 research outputs found

    Magnetic Moments of the Baryon Decuplet in a Relativistic Quark Model

    Full text link
    The magnetic moments of the baryon decuplet are calculated in a relativistic constituent quark model using the light-front formalism. Of particular interest are the magnetic moments of the Ω−\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. Our calculation for the magnetic moment ratio ÎŒ(Δ++)/ÎŒ(p)\mu(\Delta^{++})/\mu(p) is in excellent agreement with the experimental ratio, while our ratio ÎŒ(Ω−)/ÎŒ(Λ0)\mu(\Omega^-)/\mu(\Lambda^0) is slightly higher than the experimental ratio.Comment: 10 pages ReVTeX, SLAC-PUB-621

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.

    The Singularity Problem for Space-Times with Torsion

    Full text link
    The problem of a rigorous theory of singularities in space-times with torsion is addressed. We define geodesics as curves whose tangent vector moves by parallel transport. This is different from what other authors have done, because their definition of geodesics only involves the Christoffel connection, though studying theories with torsion. We propose a preliminary definition of singularities which is based on timelike or null geodesic incompleteness, even though for theories with torsion the paths of particles are not geodesics. The study of the geodesic equation for cosmological models with torsion shows that the definition has a physical relevance. It can also be motivated, as done in the literature, remarking that the causal structure of a space-time with torsion does not get changed with respect to general relativity. We then prove how to extend Hawking's singularity theorem without causality assumptions to the space-time of the ECSK theory. This is achieved studying the generalized Raychaudhuri equation in the ECSK theory, the conditions for the existence of conjugate points and properties of maximal timelike geodesics. Hawking's theorem can be generalized, provided the torsion tensor obeys some conditions. Thus our result can also be interpreted as a no-singularity theorem if these additional conditions are not satisfied. In other words, it turns out that the occurrence of singularities in closed cosmological models based on the ECSK theory is less generic than in general relativity. Our work is to be compared with previous papers in the literature. There are some relevant differences, because we rely on a different definition of geodesics, we keep the field equations of the ECSK theory in their original form rather than casting them in a form similar to general relativity with a modified energy momentum tensor,Comment: 17 pages, plain-tex, published in Nuovo Cimento B, volume 105, pages 75-90, year 199

    Electromagnetic Moments of the Baryon Decuplet

    Full text link
    We compute the leading contributions to the magnetic dipole and electric quadrupole moments of the baryon decuplet in chiral perturbation theory. The measured value for the magnetic moment of the Ω−\Omega^- is used to determine the local counterterm for the magnetic moments. We compare the chiral perturbation theory predictions for the magnetic moments of the decuplet with those of the baryon octet and find reasonable agreement with the predictions of the large--NcN_c limit of QCD. The leading contribution to the quadrupole moment of the Δ\Delta and other members of the decuplet comes from one--loop graphs. The pionic contribution is shown to be proportional to IzI_z (and so will not contribute to the quadrupole moment of I=0I=0 nuclei), while the contribution from kaons has both isovector and isoscalar components. The chiral logarithmic enhancement of both pion and kaon loops has a coefficient that vanishes in the SU(6)SU(6) limit. The third allowed moment, the magnetic octupole, is shown to be dominated by a local counterterm with corrections arising at two loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5

    The Decuplet Revisited in χ\chiPT

    Full text link
    The paper deals with two issues. First, we explore the quantitiative importance of higher multiplets for properties of the Δ\Delta decuplet in chiral perturbation theory. In particular, it is found that the lowest order one--loop contributions from the Roper octet to the decuplet masses and magnetic moments are substantial. The relevance of these results to the chiral expansion in general is discussed. The exact values of the magnetic moments depend upon delicate cancellations involving ill--determined coupling constants. Second, we present new relations between the magnetic moments of the Δ\Delta decuplet that are independent of all couplings. They are exact at the order of the chiral expansion used in this paper.Comment: 7 pages of double column revtex, no figure

    Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Full text link
    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation).Comment: 6 pages, 4 figure

    Magnetic Moments of Decuplet Baryons in Light Cone QCD

    Get PDF
    We calculate the magnetic moments of decuplet baryons containing strange quarks within the framework of light cone QCD sum rules taking into account the SU(3) flavor symmetry breaking effects. It is obtained that magnetic moments of the neutral \sso and \xis0 baryons are mainly determined by the SU(3) breaking terms. A comparison of our results on the magnetic moments of the decuplet baryons with the predictions of other approaches is presented.Comment: Latex, 20 pages, 6 figure

    Physicians' experiences with end-of-life decision-making: Survey in 6 European countries and Australia

    Get PDF
    Background: In this study we investigated (a) to what extent physicians have experience with performing a range of end-of-life decisions (ELDs), (b) if they have no experience with performing an ELD, would they be willing to do so under certain conditions and (c) which background characteristics are associated with having experience with/or being willing to make such ELDs. Methods: An anonymous questionnaire was sent to 16,486 physicians from specialities in which death is common: Australia, Belgium, Denmark, Italy, the Netherlands, Sweden and Switzerland. Results: The response rate differed between countries (39–68%). The experience of foregoing life-sustaining treatment ranged between 37% and 86%: intensifying the alleviation of pain or other symptoms while taking into account possible hastening of death between 57% and 95%, and experience with deep sedation until death between 12% and 46%. Receiving a request for hastening death differed between 34% and 71%, and intentionally hastening death on the explicit request of a patient between 1% and 56%. Conclusion: There are differences between countries in experiences with ELDs, in willingness to perform ELDs and in receiving requests for euthanasia or physician-assisted suicide. Foregoing treatment and intensifying alleviation of pain and symptoms are practiced and accepted by most physicians in all countries. Physicians with training in palliative care are more inclined to perform ELDs, as are those who attend to higher numbers of terminal patients. Thus, this seems not to be only a matter of opportunity, but also a matter of attitude

    Magnetic dipole moment of the Δ+\Delta^+(1232) from the Îłpâ†’ÎłÏ€0p\gamma p \to \gamma \pi^0 p reaction

    Full text link
    The Îłpâ†’ÎłÏ€0p\gamma p \to \gamma \pi^0 p reaction in the Δ(1232)\Delta(1232)-resonance region is investigated as a method to access the Δ+(1232)\Delta^+(1232) magnetic dipole moment. The calculations are performed within the context of an effective Lagrangian model containing both the Δ\Delta-resonant mechanism and a background of non-resonant contributions to the Îłpâ†’ÎłÏ€0p\gamma p \to \gamma \pi^0 p reaction. Results are shown both for existing and forthcoming Îłpâ†’ÎłÏ€0p\gamma p \to \gamma \pi^0 p experiments. In particular, the sensitivity of unpolarized cross sections and photon asymmetries to the Δ+\Delta^+ magnetic dipole moment is displayed for those forthcoming data.Comment: 25 pages, 11 figure
    • 

    corecore