1,496 research outputs found

    Dynamics of Uniform Quantum Gases, I: Density and Current Correlations

    Full text link
    A unified approach valid for any wavenumber, frequency, and temperature is presented for uniform ideal quantum gases allowing for a comprehensive study of number density and particle-current density response functions. Exact analytical expressions are obtained for spectral functions in terms of polylogarithms. Also, particle-number and particle-current static susceptibilities are presented which, for fugacity less than unity, additionally involve Kummer functions. The wavenumber and temperature dependent transverse-current static susceptibility is used to show explicitly that current correlations are of a long range in a Bose-condensed uniform ideal gas but for bosons above the critical temperature and for Fermi and Boltzmann gases at all temperatures these correlations are of short range. Contact repulsive interactions for systems of neutral quantum particles are considered within the random-phase approximation. The expressions for particle-number and transverse-current susceptibilities are utilized to discuss the existence or nonexistence of superfluidity in the systems under consideration

    Alien Registration- Bosse, Joseph G. (Saint Agatha, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33198/thumbnail.jp

    Analytical pair correlations in ideal quantum gases: Temperature-dependent bunching and antibunching

    Full text link
    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature{dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless but bosons show a rich structure including long-range correlations near T_c. The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T < T_c should be observable in accurate experiments.Comment: 8 pages, 1 figure, minor revisio

    Experimental designs for field and semi-field studies with solitary wild bees

    Get PDF
    The newly proposed EFSA risk assessment of plant protection products for pollinators includes for the first time not only honey bees but also non-Apis pollinators (OEPP/EPPO 2010, EFSA 2013). No official guidelines for standardized tests exist so far. We performed field and semi-field studies to evaluate suitable test designs and handling procedures for the test organisms. The objective of these studies was the development of a test system for trials under field- and semi-field conditions with the red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae). The trials were conducted in two different crops, winter oilseed rape (Brassica napus) and Phacelia (Phacelia tanacetifolia), with different nesting materials, test designs and release techniques

    Density Fluctuations in Uniform Quantum Gases

    Get PDF
    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons & fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching & anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as \surd (inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.Comment: 4 pages,8 figures,conferenc

    Verifying RoboCup Teams

    Get PDF
    Pocreeding of: 5th International Workshop on Model Checking and Artificial Intelligence. MOCHART-2008, Patras, Greece, july, 21st, 2008.Verification of multi-agent systems is a challenging task due to their dynamic nature, and the complex interactions between agents. An example of such a system is the RoboCup Soccer Simulator, where two teams of eleven independent agents play a game of football against each other. In the present article we attempt to verify a number of properties of RoboCup football teams, using a methodology involving testing. To accomplish such testing in an efficient manner we use the McErlang model checker, as it affords precise control of the scheduling of the agents, and provides convenient access to the internal states and actions of the agents of the football teams.This work has been partially supported by the FP7-ICT-2007-1 project ProTest (215868), a Ramón y Cajal grant from the Spanish Ministerio de Educación y Ciencia, and the Spanish national projects TRA2007-67374-C02-02, TIN2006-15660-C02- 02 (DESAFIOS) and S-0505/TIC/0407 (PROMESAS).Publicad

    A Direct Reduction from k-Player to 2-Player Approximate Nash Equilibrium

    Full text link
    We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.Comment: 21 page

    Dynamic stability control in younger and older adults during stair descent.

    Get PDF
    The purpose of this study was to examine dynamic stability control in older and younger adults while descending stairs. Thirteen older (aged 64-77years) and 13 younger (aged 22-29years) adults descended a staircase at their preferred speed. A motion capture system and three force plates were used to determine locomotion mechanics. Dynamic stability was investigated by using the margin of stability, calculated as the instantaneous difference between anterior boundary of the base of support and extrapolated centre of mass. At the initiation of the single support phase, older adults demonstrated a more negative (p<.05) margin of stability value. The component responsible for the lower margin of stability in the elderly was the higher velocity of the centre of mass (p<.05). Before the initiation of the single support phase, the older adults showed a lower (p<.05) ankle and knee joint angular impulse compared to the younger ones. We found a significant correlation (r=.729, p<.05) between centre of mass velocity and joint angular impulse. These results indicate that older adults are at greater risk of falls while descending stairs potentially due to a reduced ability to generate adequate leg-extensor muscular output to safely control the motion of the body's centre of mass while stepping down
    • …
    corecore