16 research outputs found

    Characterization of the Core-Shell Nanoparticles Formed as Soluble Hydrogen-Bonding Interpolymer Complexes at low pH

    Get PDF
    The formation of soluble hydrogen-bonding interpolymer complexes between poly(acrylic acid) (PAA) and poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM) at pH = 2.0 was studied. A viscometric study showed that in semidilute solution a physical gel is formed, due to the interconnection of the anionic P(AA-co-AMPSA) backbone of the graft copolymer, in a transient network, by means of the complexes formed between the PDMAM side chains of the graft copolymer and PAA. Dynamic and static light scattering measurements, in conjunction with small angle neutron scattering measurements, suggest the formation of core-shell colloidal nanoparticles in dilute solution, comprised by an insoluble PAA/PDMAM core surrounded by an anionic P(AA-co-AMPSA) corona. Even if larger clusters are formed in semidilute solution, the size of the insoluble core remains practically stable. Atomic force microscopy performed under ambient conditions, reveal that the particles collapse and flatten upon deposition on a substrate, with dimensions close to the ones of the dry hydrophobic core

    Particulate matter exposure during pregnancy is associated with birth weight, but not gestational age, 1962-1992: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to air pollutants is suggested to adversely affect fetal growth, but the evidence remains inconsistent in relation to specific outcomes and exposure windows.</p> <p>Methods</p> <p>Using birth records from the two major maternity hospitals in Newcastle upon Tyne in northern England between 1961 and 1992, we constructed a database of all births to mothers resident within the city. Weekly black smoke exposure levels from routine data recorded at 20 air pollution monitoring stations were obtained and individual exposures were estimated via a two-stage modeling strategy, incorporating temporally and spatially varying covariates. Regression analyses, including 88,679 births, assessed potential associations between exposure to black smoke and birth weight, gestational age and birth weight standardized for gestational age and sex.</p> <p>Results</p> <p>Significant associations were seen between black smoke and both standardized and unstandardized birth weight, but not for gestational age when adjusted for potential confounders. Not all associations were linear. For an increase in whole pregnancy black smoke exposure, from the 1<sup>st </sup>(7.4 ÎŒg/m<sup>3</sup>) to the 25<sup>th </sup>(17.2 ÎŒg/m<sup>3</sup>), 50<sup>th </sup>(33.8 ÎŒg/m<sup>3</sup>), 75<sup>th </sup>(108.3 ÎŒg/m<sup>3</sup>), and 90<sup>th </sup>(180.8 ÎŒg/m<sup>3</sup>) percentiles, the adjusted estimated decreases in birth weight were 33 g (SE 1.05), 62 g (1.63), 98 g (2.26) and 109 g (2.44) respectively. A significant interaction was observed between socio-economic deprivation and black smoke on both standardized and unstandardized birth weight with increasing effects of black smoke in reducing birth weight seen with increasing socio-economic disadvantage.</p> <p>Conclusions</p> <p>The findings of this study progress the hypothesis that the association between black smoke and birth weight may be mediated through intrauterine growth restriction. The associations between black smoke and birth weight were of the same order of magnitude as those reported for passive smoking. These findings add to the growing evidence of the harmful effects of air pollution on birth outcomes.</p

    Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition

    No full text
    International audienceIn this work, optimized conditions for preparation of chitosan and hyaluronan polyelectrolyte complex are proposed. The objective was to produce new biomaterials being biocompatible and bioresorbable in the body as well as approaching the extracellular matrix (ECM) structure. These materials will be tested for chondrocyte development in tissue engineering and wound healing applications. Nanofibers made of the polyelectrolyte complex (PEC) were successfully manufactured by electrospinning, and casted films were used as a model for properties comparison. To our knowledge, it is the first time that stable chitosan/hyaluronan fibers are produced, which were observed to be long-lasting in buffer at pH~7.4. The role of thermal treatment at 120 ‱ C for 4 h is examined to control the degree of swelling by crosslinking of the two polysaccharides by H-bonds and amide bonds formation. The properties of the materials are tested for different PEC compositions at different pH values, based on swelling and solubility degrees, diameters of nanofibers and mechanical performances. The influence of the solvent (acidic potential and composition) utilized to process biomaterials is also examined. Acid formic/water 50/50 v/v is observed to be the more appropriated solvent for the carried-out procedures

    Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation

    No full text
    International audiencePolymer nanocomposites were prepared from poly(oxyethylene) PEO as the matrix and high aspect ratio cellulose whiskers as the reinforcing phase. Nanocomposite films were obtained either by extrusion or by casting/evaporation process. Resulting films were characterized using microscopies, differential scanning calorimetry, thermogravimetry and mechanical and rheological analyses. A thermal stabilization of the modulus of the cast/evaporated nanocomposite films for temperatures higher than the PEO melting temperature was reported. This behavior was ascribed to the formation of a rigid cellulosic network within the matrix. The rheological characterization showed that nanocomposite films have the typical behavior of solid materials. For extruded films, the reinforcing effect of whiskers is dramatically reduced, suggesting the absence of a strong mechanical network or at least, the presence of a weak whiskers percolating network. Rheological, mechanical and microscopy studies were involved in order to explain this behavior

    Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    No full text
    International audienceNanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry.Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers

    Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO

    No full text
    International audienceThe linear and nonlinear viscoelastic behaviors of poly(ethylene oxide) (PEO) in aqueous media have been investigated as a function of concentration and molecular weight. A particular interest has been paid to study the effect of turbulent flow under stirring, inducing both shear and elongational stresses, on the rheological behavior of the polymer solutions. The comparison of intrinsic viscosity and viscoelastic properties between shaken and stirred PEO solutions is discussed at the molecular scale in terms of chain scission and aggregation. Results point out that the effect of the mechanical history on the rheological response of PEO solutions depends also on the concentration regime and molecular weight. Indeed, the influence of the dispersion procedure vanishes by decreasing both the concentration and the molecular weight
    corecore