99 research outputs found

    Supplementing wind turbine pitch control with a trailing edge flap smart rotor

    Get PDF
    Placement of additional control devices along the span of the wind turbine blades is being considered for multi-MW wind turbines to actively alter the local aerodynamic characteristics of the blades. This smart rotor approach can reduce loads on the rotor due to wind field non-uniformity, but also, as presented in this paper, can supplement the pitch control system. Rotor speed and tower vibration damping are actively controlled using pitch. By supplementing the speed control using smart rotor control, pitch actuator travel is reduced by 15 pitch rates by 23 and pitch accelerations by 42 This is achieved through filtering the pitch demand such that high frequency signals are dealt with by the smart rotor devices while the low frequency signal is dealt with by pitching the blades. It is also shown that this may be achieved while also using the smart rotor control for load reduction, though with reduced effectiveness. This shows that smart rotor control can be used to trade pitch actuator requirements as well as load reductions with the cost of installing and maintaining the distributed devices

    Controller Field Tests on the NREL CART2 Turbine

    Get PDF
    This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping

    Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades

    No full text
    This paper presents an aeroservoelastic modeling approach for dynamic load alleviation in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a moving base, and the rotating blades are modeled using geometrically non-linear composite beams, which are linearized around reference conditions with arbitrarily-large structural displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice method and the resulting dynamic aeroelastic model is written in a state-space formulation suitable for model reductions and control synthesis. A linear model of a single blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments, which is finally shown to provide load reductions of about 20% in closed-loop on the full wind turbine non-linear aeroelastic model

    A thermostable protein matrix for spectroscopic analysis of organic semiconductors

    Get PDF
    Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials

    Emissive spin-0 triplet-pairs are a direct product of triplet–triplet annihilation in pentacene single crystals and anthradithiophene films

    Get PDF
    Singlet fission and triplet–triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, 1(TT). Recently however, there has been debate over the role of 1(TT) in triplet–triplet annihilation. Here we use intensity-dependent, low-temperature photoluminescence measurements, combined with kinetic modelling, to show that distinct 1(TT) emission arises directly from triplet–triplet annihilation in high-quality pentacene single crystals and anthradithiophene (diF-TES-ADT) thin films. This work demonstrates that a real, emissive triplet-pair state acts as an intermediate in both singlet fission and triplet–triplet annihilation and that this is true for both endo- and exothermic singlet fission materials

    Measuring persistent and transient energy efficiency in the US

    Get PDF
    The promotion of US energy efficiency policy is seen as a very important activity. Generally, the level of energy efficiency of a country or state is approximated by energy intensity, commonly calculated as the ratio of energy use to GDP. However, energy intensity is not an accurate proxy for energy efficiency given that changes in energy intensity are a function of changes in several factors including the structure of the economy, climate, efficiency in the use of resources, behaviour and technical change. The aim of this paper is to measure persistent and transient energy efficiency for the whole economy of 49 states in the US using a stochastic frontier energy demand approach. A total US energy demand frontier function is estimated using panel data for 49 states over the period 1995 to 2009 using two panel data models: the Mundlak version of the random effects model (which estimates the persistent part of the energy efficiency) and the true random effects model (which estimates the transient part of the energy efficiency). The analysis confirms that energy intensity is not a good indicator of energy efficiency, whereas, by controlling for a range of economic and other factors, the measures of energy efficiency obtained via the approach adopted here are. Moreover, the estimates show that although for some states energy intensity might give a reasonable indication of a state’s relative energy efficiency, this is not the case for all states.ISSN:1570-646XISSN:1570-647

    Fatigue Damage Mitigation by the Integration of Active and Passive Load Control Techniques on Wind Turbines

    No full text
    • …
    corecore