2,203 research outputs found

    On the Mass-Period Correlation of the Extrasolar Planets

    Get PDF
    We report on a possible correlation between the masses and periods of the extrasolar planets, manifested as a paucity of massive planets with short orbital periods. Monte-Carlo simulations show the effect is significant, and is not solely due to an observational selection effect. We also show the effect is stronger than the one already implied by published models that assumed independent power-law distributions for the masses and periods of the extrasolar planets. Planets found in binary stellar systems may have an opposite correlation. The difference is highly significant despite the small number of planets in binary systems. We discuss the paucity of short-period massive planets in terms of some theories for the close-in giant planets. Almost all models can account for the deficit of massive planets with short periods, in particular the model that assumes migration driven by a planet-disk interaction, if the planet masses do not scale with their disk masses.Comment: 13 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Acute Malnutrition and Under-5 Mortality, Northeastern Part of India.

    Get PDF
    We assessed the prevalence of childhood acute malnutrition and under-five mortality rate (U5MR) in Darbhanga district, India, using a two-stage 49-cluster household survey. A total of 1379 households comprising 8473 people were interviewed. During a 90-day recall period, U5MR was 0.5 [95% confidence interval (CI), 0.2-1.4] per 10 000 per day. The prevalence of global acute malnutrition among 1405 children aged 6-59 months was 15.4% (NCHS) and 19.4% (2006 WHO references). This survey suggests that in Darbhanga district, the population is in a borderline food crisis with few food resources. Appropriate strategies should be developed to improve the overall nutritional and health status of children

    Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants

    Full text link

    Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System

    Full text link
    It has been suggested that the long-lived residual radial velocity variations observed in the precision radial velocity measurements of the primary of Gamma Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of this plant is studied and also the possibility of the existence of a hypothetical Earth-like planet in the habitable zone of its central star is discussed. Simulations, which have been carried out for different values of the eccentricity and semimajor axis of the binary, as well as the orbital inclination of its Jupiter-like planet, expand on previous studies of this system and indicate that, for the values of the binary eccentricity smaller than 0.5, and for all values of the orbital inclination of the Jupiter-like planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For larger values of the binary eccentricity, the system becomes gradually unstable. Integrations also indicate that, within this range of orbital parameters, a hypothetical Earth-like planet can have a long-term stable orbit only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio

    A Role for Phosphoinositides in Regulating Plant Nuclear Functions

    Get PDF
    Nuclear localized inositol phospholipids and inositol phosphates are important for regulating many essential processes in animal and yeast cells such as DNA replication, recombination, RNA processing, mRNA export and cell cycle progression. An overview of the current literature indicates the presence of a plant nuclear phosphoinositide (PI) pathway. Inositol phospholipids, inositol phosphates, and enzymes of the PI pathway have been identified in plant nuclei and are implicated in DNA replication, chromatin remodeling, stress responses and hormone signaling. In this review, the potential functions of the nuclear PI pathway in plants are discussed within the context of the animal and yeast literature. It is anticipated that future research will help shed light on the functional significance of the nuclear PI pathway in plants

    High resolution quantum sensing with shaped control pulses

    Full text link
    We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coherent microwave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic fields and nuclear magnetic resonance signals of carbon-13 spins with high spectral resolution. Our method is simple to implement and especially useful for quantum applications that require fast phase gates, many control pulses, and high fidelity.Comment: 5 pages, 4 figures, plus supplemental materia

    Planets in binary systems: is the present configuration indicative of the formation process?

    Get PDF
    The present dynamical configuration of planets in binary star systems may not reflect their formation process since the binary orbit may have changed in the past after the planet formation process was completed. An observed binary system may have been part of a former hierarchical triple that became unstable after the planets completed their growth around the primary star. Alternatively, in a dense stellar environment even a single stellar encounter between the star pair and a singleton may singificantly alter the binary orbit. In both cases the planets we observe at present would have formed when the dynamical environment was different from the presently observed one. We have numerically integrated the trajectories of the stars (binary plus singleton) and of test planets to investigate the abovementioned mechanisms. Our simulations show that the circumstellar environment during planetary formation around the primary was gravitationally less perturbed when the binary was part of a hierarchical triple because the binary was necessarely wider and, possibly, less eccentric. This circumstance has consequences for the planetary system in terms of orbital spacing, eccentricity, and mass of the individual planets. Even in the case of a single stellar encounter the present appearance of a planetary system in a binary may significantly differ from what it had while planet formation was ongoing. However, while in the case of instability of a triple the trend is always towards a tighter and more eccentric binary system, when a single stellar encounter affects the system the orbit of the binary can become wider and be circularized.Comment: 5 pages, 5 figures Accepted for publication on A&
    corecore