112 research outputs found

    Editorial: Regulation of Soluble Immune Mediators by Non-Coding RNAs

    Get PDF
    Non-coding RNAs (ncRNAs), defined as transcripts that do not encode proteins, are known since long time for their role in translation (i.e. transfer RNAs, ribosomal RNAs) and in splicing events (i.e. small nuclear and small nucleolar RNAs). However, only recently, the revolutionary advances in deep sequencing technology brought to light several new classes of ncRNA, classified according to their length into \u201cshort\u201d ncRNAs (<200 nucleotides, that includes piwi-associated RNAs, endogenous short-interfering RNAs, microRNAs, Y-RNAs and others), and \u201clong\u201d ncRNAs (lncRNAs, >200 nucleotides) (1). Cytokines are crucial soluble messengers of the immune system that regulate and sustain inflammation and immunity. Cytokine expression is tightly regulated, reflecting the need of the immune system to tailor the magnitude and duration of its responses to induce pathogen clearance, but not tissue damage. Thus, understanding cytokine regulation is crucial to gain insight and eventually manipulate undesired immune responses. In this Research Topic, 53 authors contributed 11 articles touching on many of the combined roles of ncRNAs on the production of cytokines and their consequential effect on cytokine-related functional outputs, as well as inflammatory/autoimmune pathologies

    Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7

    Get PDF
    The excessive production of type I IFNs is a hallmark and a main pathogenic mechanism of many autoimmune diseases, including systemic lupus erythematosus (SLE). In these pathologies, the sustained secretion of type I IFNs is dependent on the improper activation of plasmacytoid DCs (pDCs) by self-nucleic acids. However, the nature and origin of pDC-activating self-nucleic acids is still incompletely characterized. Here, we report that exosomes isolated from the plasma of SLE patients can activate the secretion of IFN-α by human blood pDCs in vitro. This activation requires endosomal acidification and is recapitulated by microRNAs isolated from exosomes, suggesting that exosome-delivered microRNAs act as self-ligands of innate single-stranded endosomal RNA sensors. By using synthetic microRNAs, we identified an IFN induction motif that is responsible for the TLR7-dependent activation, maturation, and survival of human pDCs. These findings identify exosome-delivered microRNAs as potentially novel TLR7 endogenous ligands able to induce pDC activation in SLE patients. Therefore, microRNAs may represent novel pathogenic mediators in the onset of autoimmune reactions and potential therapeutic targets in the treatment of type I IFN-mediated diseases

    TLR Signalling Pathways Diverge in Their Ability to Induce PGE2

    Get PDF
    PGE2 is a lipid mediator abundantly produced in inflamed tissues that exerts relevant immunoregulatory functions. Dendritic cells (DCs) are key players in the onset and shaping of the inflammatory and immune responses and, as such, are well known PGE2 targets. By contrast, the precise role of human DCs in the production of PGE2 is poorly characterized. Here, we asked whether different ligands of Toll-like receptors (TLRs), a relevant family of pathogen-sensing receptors, could induce PGE2 in human DCs. The only active ligands were LPS (TLR4 ligand) and R848 (TLR7-8 ligand) although all TLRs, but TLR9, were expressed and functional. While investigating the molecular mechanisms hindering the release of PGE2, our experiments highlighted so far oversight differences in TLR signalling pathways in terms of MAPK and NF-ÎşB activation. In addition, we identified that the PGE2-limiting checkpoint downstream TLR3, TLR5, and TLR7 was a defect in COX2 induction, while TLR1/2 and TLR2/6 failed to mobilize arachidonic acid, the substrate for the COX2 enzyme. Finally, we demonstrated the in vivo expression of PGE2 by myeloid CD11c(+) cells, documenting a role for DCs in the production of PGE2 in human inflamed tissues

    Cytokine Targeting by miRNAs in Autoimmune Diseases

    Get PDF
    Persistent and excessive cytokine production is a hallmark of autoimmune diseases and may play a role in disease pathogenesis and amplification. Therefore, cytokine neutralization is a useful therapeutic strategy to treat immune-mediated conditions. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in diverse biological processes. Altered miRNA levels are observed in most autoimmune diseases and are recognized to influence autoimmunity through different mechanisms. Here, we review the impact of altered miRNA levels on the expression of cytokines that play a relevant pathogenic role in autoimmunity, namely primary pro-inflammatory cytokines, the IL-17/IL-23 axis, type I interferons and IL-10. Regulation can be either “direct” on the target cytokine, or “indirect,” meaning that one given miRNA post-transcriptionally regulates the expression of a protein that in turn influences the level of the cytokine. In addition, miRNAs associated with extracellular vesicles can regulate cytokine production in neighboring cells, either post-transcriptionally or via the stimulation of innate immune RNA-sensors, such as Toll-like receptors. Because of their tremendous potential as physiological and pathological regulators, miRNAs are in the limelight as promising future biopharmaceuticals. Thus, these studies may lead in the near future to the design and testing of therapeutic miRNAs as next generation drugs to target pathogenic cytokines in autoimmunity

    Inhibition of Class I Histone Deacetylase Activity Blocks the Induction of TNFAIP3 Both Directly and Indirectly via the Suppression of Endogenous TNF-α

    Get PDF
    Histone deacetylase inhibitors (HDIs) are promising drugs for the treatment of inflammatory diseases. However, their therapeutical exploitation is slowed down by severe adverse manifestations that can hardly be foreseen, mainly due to incomplete knowledge of how HDIs impact the delicate balance of inflammatory mediators. In this work, we characterized the effects of the HDI trichostatin A (TSA) on the expression of TNFAIP3, which is a crucial inhibitor of the classical NF-kB pathway and an LPS-induced negative feedback regulator. The accumulation of TNFAIP3 mRNA after LPS stimulation showed biphasic behavior, with one wave within the first hour of stimulation and a second wave several hours later, which were both reduced by TSA. By using inhibition and knockdown approaches, we identified two temporally and mechanistically distinct modes of action. The first wave of TNAIP3 accumulation was directly blunted by the histone deacetylase (HDAC) blockade. By contrast, the second wave was decreased mainly because of the lack of endogenous TNF-α induction, which, in turn, depended on the intact HDAC activity. In both cases, class I HDACs appeared to play a nonredundant role, with HDAC3 required, but not sufficient, for TNF-α and TNFAIP3 induction. In addition to TNFAIP3, TNF-α is known to induce many response genes that orchestrate the inflammatory cascade. Thus, suppression of TNF-α may represent a general mechanism through which HDIs regulate a selected set of target genes

    The atypical receptor CCRL2 (C-C Chemokine Receptor-Like 2) does not act as a decoy receptor in endothelial cells

    Get PDF
    C-C chemokine receptor-like 2 (CCRL2) is a non-signaling seven-transmembrane domain (7-TMD) receptor related to the atypical chemokine receptor (ACKR) family. ACKRs bind chemokines but do not activate G protein-dependent signaling or cell functions. ACKRs were shown to regulate immune functions in vivo by their ability to scavenge chemokines from the local environment. This study was performed to investigate whether CCRL2 shares two of the main characteristics of ACKRs, namely the ability to internalize and scavenge the ligands. Cell membrane analysis of CCRL2-transfected cells revealed a weak, constitutive, ligand-independent internalization, and recycling of CCRL2, with a kinetics that was slower than those observed with ACKR3, a prototypic ACKR, or other chemotactic signaling receptors [i.e., chemokine-like receptor 1 and C-X-C motif chemokine receptor 2]. Intracellularly, CCRL2 colocalized with early endosome antigen 1-positive and Rab5-positive vesicles and with recycling compartments mainly characterized by Rab11-positive vesicles. CCRL2-transfected cells and activated mouse blood endothelial cells, that endogenously express CCRL2, were used to investigate the scavenging ability of CCRL2. These experiments confirmed the ability of CCRL2 to bind chemerin, the only recognized ligand, but excluded the ability of CCRL2 to perform scavenging. Collectively, these results identify unique functional properties for this member of the non-signaling 7-TMD receptor family

    SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion

    Get PDF
    COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease

    The atypical receptor CCRL2 (C-C Chemokine Receptor-Like 2) does not act as a decoy receptor in endothelial cells

    Get PDF
    C-C chemokine receptor-like 2 (CCRL2) is a non-signaling seven-transmembrane domain (7-TMD) receptor related to the atypical chemokine receptor (ACKR) family. ACKRs bind chemokines but do not activate G protein-dependent signaling or cell functions. ACKRs were shown to regulate immune functions in vivo by their ability to scavenge chemokines from the local environment. This study was performed to investigate whether CCRL2 shares two of the main characteristics of ACKRs, namely the ability to internalize and scavenge the ligands. Cell membrane analysis of CCRL2-transfected cells revealed a weak, constitutive, ligand-independent internalization, and recycling of CCRL2, with a kinetics that was slower than those observed with ACKR3, a prototypic ACKR, or other chemotactic signaling receptors [i.e., chemokine-like receptor 1 and C-X-C motif chemokine receptor 2]. Intracellularly, CCRL2 colocalized with early endosome antigen 1-positive and Rab5-positive vesicles and with recycling compartments mainly characterized by Rab11-positive vesicles. CCRL2-transfected cells and activated mouse blood endothelial cells, that endogenously express CCRL2, were used to investigate the scavenging ability of CCRL2. These experiments confirmed the ability of CCRL2 to bind chemerin, the only recognized ligand, but excluded the ability of CCRL2 to perform scavenging. Collectively, these results identify unique functional properties for this member of the non-signaling 7- TMD receptor family
    • …
    corecore