99 research outputs found

    Standardized Preparation of Single-Cell Suspensions from Mouse Lung Tissue using the gentleMACS Dissociator

    Get PDF
    The preparation of single-cell suspensions from tissues is an important prerequisite for many experiments in cellular research. The process of dissociating whole organs requires specific parameters in order to obtain a high number of viable cells in a reproducible manner. The gentleMACS Dissociator optimizes this task with a simple, practical protocol. The instrument contains pre-programmed settings that are optimized for the efficient but gentle dissociation of a variety of tissue types, including mouse lungs. In this publication the use of the gentleMACS Dissociator on lung tissue derived from mice is demonstrated

    FAS-Based Cell Depletion Facilitates the Selective Isolation of Mouse Induced Pluripotent Stem Cells

    Get PDF
    Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC) opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF) and mouse pluripotent stem cells (PSC). Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM) and stage-specific embryonic antigen 1 (SSEA1) were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues

    Dynamic expression of the pro-dopaminergic transcription factors Pax6 and Dlx2 during postnatal olfactory bulb neurogenesis

    Get PDF
    Olfactory bulb (OB) neurogenesis generates neurons that use GABA or dopamine as their neurotransmitters throughout life. Regionalized stem cell populations in the periventricular zone (PVZ) of the lateral ventricles (LVs) have been shown to be at the basis of neuronal diversity in the system. For example dopaminergic neurons arise predominantly from neural stem cells (NSCs) residing in the dorsal PVZ and depend on the expression of the transcription factors Pax6 and Dlx2 for their specification. In addition, Dlx2 is required for neurogenesis in general. Using targeted in vivo electroporation combined with immuno-fluorescence imaging and microarray analysis, we provide here detailed spatial and temporal expression data with cellular resolution in this system. We find that all along the neurogenic process Pax6 expression remains restricted to the dorsal PVZ, whereas nearly all neuroblasts express Dlx2, including those of the dorsal lineage, which are switched on for Dlx2 when they enter the rostral migratory stream (RMS). These data allow to explain and precise the functions of these two genes in postnatal OB neurogenesis

    MiR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition

    Get PDF
    During neurogenesis, generation, migration and integration of the correct numbers of each neuron sub-Type depends on complex molecular interactions in space and time. MicroRNAs represent a key control level allowing the flexibility and stability needed f

    Differential expression of long non-coding RNAs are related to proliferation and histological diversity in follicular lymphomas

    Get PDF
    Long non‐coding RNAs (lncRNAs) comprise a family of non‐coding transcripts that are emerging as relevant gene expression regulators of different processes, including tumour development. To determine the possible contribution of lncRNA to the pathogenesis of follicular lymphoma (FL) we performed RNA‐sequencing at high depth sequencing in primary FL samples ranging from grade 1‐3A to aggressive grade 3B variants using unpurified (n = 16) and purified (n = 12) tumour cell suspensions from nodal samples. FL grade 3B had a significantly higher number of differentially expressed lncRNAs (dif‐lncRNAs) with potential target coding genes related to cell cycle regulation. Nine out of the 18 selected dif‐lncRNAs were validated by quantitative real time polymerase chain reaction in an independent series (n = 43) of FL. RP4‐694A7.2 was identified as the top deregulated lncRNA potentially involved in cell proliferation. RP4‐694A7.2 silencing in the WSU‐FSCCL FL cell line reduced cell proliferation due to a block in the G1/S phase. The relationship between RP4‐694A7.2 and proliferation was confirmed in primary samples as its expression levels positively related to the Ki‐67 proliferation index. In summary, lncRNAs are differentially expressed across the clinico‐biological spectrum of FL and a subset of them, related to cell cycle, may participate in cell proliferation regulation in these tumours

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The Promise and the Hope of Gene Therapy.

    No full text
    It has been over 30 years since visionary scientists came up with the term &quot;Gene Therapy,&quot; suggesting that for certain indications, mostly monogenic diseases, substitution of the missing or mutated gene with the normal allele via gene addition could provide long-lasting therapeutic effect to the affected patients and consequently improve their quality of life. This notion has recently become a reality for certain diseases such as hemoglobinopathies and immunodeficiencies and other monogenic diseases. However, the therapeutic wave of gene therapies was not only applied in this context but was more broadly employed to treat cancer with the advent of CAR-T cell therapies. This review will summarize the gradual advent of gene therapies from bench to bedside with a main focus on hemopoietic stem cell gene therapy and genome editing and will provide some useful insights into the future of genetic therapies and their gradual integration in the everyday clinical practice
    corecore