111 research outputs found

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis

    Characteristics of pncA mutations in multidrug-resistant tuberculosis in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrazinamide (PZA) is an important first-line drug in multidrug-resistant tuberculosis (MDRTB) treatment. However, the unreliable results obtained from traditional susceptibility testing limits its usefulness in clinical settings. The detection of <it>pncA </it>gene mutations is a potential surrogate of PZA susceptibility testing, especially in MDRTB isolates. The impact of genotypes of <it>M. tuberculosis </it>in <it>pncA </it>gene mutations also remains to be clarified.</p> <p>Methods</p> <p>MDRTB isolates were collected from six hospitals in Taiwan from January 2007 to December 2009. <it>pncA </it>gene sequencing, pyrazinamidase activity testing, and spoligotyping were performed on all of the isolates. PZA susceptibility was determined by the BACTEC MGIT 960 PZA method. The sensitivity and specificity of <it>pncA </it>gene analysis were estimated based on the results of PZA susceptibility testing.</p> <p>Results</p> <p>A total of 66 MDRTB isolates, including 37 Beijing and 29 non-Beijing strains, were included for analysis. Among these isolates, 36 (54.5%) were PZA-resistant and 30 (45.5%) were PZA-susceptible. The PZA-resistant isolates were more likely to have concomitant resistance to ethambutol and streptomycin. Thirty-seven mutation types out of 30 isolates were identified in the <it>pncA </it>gene, and most of them were point mutations. The sensitivities of <it>pncA </it>gene sequencing for PZA susceptibility in overall isolates, Beijing and non-Beijing strains were 80.6%, 76.2%, and 86.7% respectively, and the specificities were 96.7%, 93.8%, and 100% respectively.</p> <p>Conclusions</p> <p>More than half of the MDRTB isolates in this study are PZA-resistant. Analysis of <it>pncA </it>gene mutations helped to identify PZA-susceptible MDRTB isolates, especially in non-Beijing strains.</p

    Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response

    Get PDF
    The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence

    Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis

    Get PDF
    Isotopomer-assisted metabolite analysis was used to investigate the central metabolism of Mycobacterium smegmatis and its transition from normal growth to a non-replicating state under a hypoxic environment. Tween 80 significantly promoted aerobic growth by improving O2 transfer, while only small amount was degraded and metabolized via the TCA cycle for biomass synthesis. As the bacillus encountered hypoxic stress, isotopomer analysis suggested: (1) isocitrate lyase activity increased, which further induced glyoxylate pathway and glycine dehydrogenase for replenishing NAD+; (2) the relative amount of acetyl-CoA entering the TCA cycle was doubled, whereas little entered the glycolytic and pentose phosphate pathways

    Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression

    Get PDF
    In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens

    Catalytic and Non-Catalytic Roles for the Mono-ADP-Ribosyltransferase Arr in the Mycobacterial DNA Damage Response

    Get PDF
    Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance

    The Regulation of Sulfur Metabolism in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells. The sulfate assimilation pathway of Mtb produces a number of sulfur-containing metabolites with important contributions to pathogenesis and survival. This pathway is regulated by diverse environmental cues and regulatory proteins that mediate sulfur transactions in the cell. Here, we discuss the transcriptional and biochemical mechanisms of sulfur metabolism regulation in Mtb and potential small molecule regulators of the sulfate assimilation pathway that are collectively poised to aid this intracellular pathogen in its expert manipulation of the host. From this global analysis, we have identified a subset of sulfur-metabolizing enzymes that are sensitive to multiple regulatory cues and may be strong candidates for therapeutic intervention
    corecore