1,734 research outputs found

    Archaeometric Study of the White Marbles from “Madonna Della Febbre” Altar in San Domenico Church (Cosenza, Southern Italy)

    Get PDF
    San Domenico Church was built between 1441 and 1468 and represents one of the most important historical buildings of the Cosenza area (Calabria, Southern Italy) thanks to its architectonic style and the works inside, such as the “Madonna della Febbre”, a notable marble altar dated back to the XVI century. The church, as well as the sculptural group, underwent various interventions over time, unfortunately scarcely documented; thus, in this paper, the characterization of six white marble samples coming from the altar, was carried out to determine their provenance. The samples were analyzed by means of complementary methodologies well known in the archaeometric field: polarized optical microscopy (POM); an electron probe micro analyzer coupled with an energy dispersive spectrometer (EPMA-EDS); inductively coupled plasma–mass spectrometry (ICP-MS); and isotope ratio mass spectrometry (IRMS). The results provided important information about the “Madonna della Febbre” altar, suggesting the presence of different typologies of marbles and hypothesizing their possible provenance, including Carrara and Docimium. It was not clear if these marbles were re-used materials but, regardless, the reported information adds precious elements to the history of the entire architectonic complex, providing new issues to be deepened

    Adaptive Stokes-Based Polarization Demultiplexing for Long-Haul Multi-Subcarrier Systems

    Get PDF
    We experimentally evaluate the performance of the adaptive Stokes polarization demultiplexing (PolDemux) algorithm over a long-haul optical link considering the propagation of 31 × 192 Gb/s channels modulated as PM-16QAM multisubcarrier (MSC) signals. Initially, we consider 1 × 24 Gbaud channel under test, and subsequently, we assess the performance of the algorithm on an increasing number of subcarriers (up to 12 × 2 Gbaud) while keeping the same aggregate symbol rate. Taking advantage of the higher robustness of MSC signals toward chromatic dispersion (CD), we demonstrate that the memoryless Stokes-based PolDemux algorithm, originally designed for short reach links, can also be used for low-complexity and modulation transparent polarization demultiplexing in long-haul systems. In addition, we demonstrate that the PolDemux rotation matrix for the MSC signals can be estimated over a restricted group of Nref subcarriers and seamlessly applied to all Nsc subcarriers, thereby significantly reducing the overall complexity by a factor of ∼Nsc/Nref

    Improving in vitro induction of autopolyploidy in grapevine seedless cultivars.

    Get PDF
    The efficiency of in vitro polyploidization depends on several variables associated to the plant, the antimicrotubule agent and the interactions between them. In the present work, we have used response-surface methodology to determine the best operating conditions for plant recovery in polyploidization assays for shoot apices and somatic embryos of two seedless grape cultivars, employing colchicine and oryzalin. Explant type, tubulin-interfering compound and concentration were the critical factors determining plant recovery. Linear reduction in viable plant regeneration via organogenesis and somatic embryogenesis was obtained by increasing oryzalin concentrations and treatment time, whereas the effects of colchicine were better described by a quadratic design for both explants types. The conditions promoting higher rates of plant recovery were used in chromosome doubling experiments with oryzalin and colchicine for shoot apices and somatic embryos of ?Crimson seedless? and ?BRS Clara?. The established protocols allowed the recovery of non-chimerical autotetraploid plants at rates higher than 30 % for both cultivars. Stomata size parameters statistically correlate to the ploidy level of the regenerants and were effective for preliminary polyploidy screening. Autotetraploid lines of seedless grapes were incorporated into the Vitis germplasm bank for further agronomical evaluations. To our knowledge, this is the first report of in vitro oryzalin induced polyploidization of grapevine and of the use of mathematical modeling to optimize chromosome doubling in plants

    Crack channelling mechanisms in brittle coating systems under moisture or temperature gradients

    Get PDF
    Abstract: Crack channelling is predicted in a brittle coating-substrate system that is subjected to a moisture or temperature gradient in the thickness direction. Competing failure scenarios are identified, and are distinguished by the degree to which the coating-substrate interface delaminates, and whether this delamination is finite or unlimited in nature. Failure mechanism maps are constructed, and illustrate the sensitivity of the active crack channelling mechanism and associated channelling stress to the ratio of coating toughness to interfacial toughness, to the mismatch in elastic modulus and to the mismatch in coefficient of hygral or thermal expansion. The effect of the ratio of coating to substrate thickness upon the failure mechanism and channelling stress is also explored. Closed-form expressions for the steady-state delamination stress are derived, and are used to determine the transition value of moisture state that leads to unlimited delamination. Although the results are applicable to coating-substrate systems in a wide range of applications, the study focusses on the prediction of cracking in historical paintings due to indoor climate fluctuations, with the objective of helping museums developing strategies for the preservation of art objects. For this specific application, crack channelling with delamination needs to be avoided under all circumstances, as it may induce flaking of paint material. In historical paintings, the substrate thickness is typically more than ten times larger than the thickness of the paint layer; for such a system, the failure maps constructed from the numerical simulations indicate that paint delamination is absent if the delamination toughness is larger than approximately half of the mode I toughness of the paint layer. Further, the transition between crack channelling with and without delamination appears to be relatively insensitive to the mismatch in the elastic modulus of the substrate and paint layer. The failure maps developed in this work may provide a useful tool for museum conservators to identify the allowable indoor humidity and temperature fluctuations for which crack channelling with delamination is prevented in historical paintings

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Interfacial intermetallic growth and strength of composite lead-free solder alloy through isothermal aging

    Get PDF
    The effects of particle reinforcement of Sn-4.0wt.%Ag-0.5wt.%Cu (SAC405) lead-free solder on interfacial intermetallic layer growth and strength of the ensuing joints through short-term isothermal aging (150 degrees C) were studied. Composite solders were prepared by either incorporating 2 wt.% Cu (3 mu m to 20 mu m) or Cu2O (similar to 150 nm) particles into SAC405 paste. Aggressive flux had the effect of reducing the Cu2O nanoparticles into metallic Cu which subsequently reacted with the solder alloy to form the Cu6Sn5 intermetallic. While all solders had similar interfacial intermetallic growth upon reflow, both of the composite solders' growth rates slowed through aging to reach a common growth rate exponent of approximately 0.38, considerably lower than that of the nonreinforced solder (n = 0.58). The nanoscale reinforced solder additionally exhibited the highest tensile strength in both the initial and aged conditions, behavior also attributed to its quick conversion to a stable microstructure
    corecore