40 research outputs found

    An anti-interleukin-2 receptor drug attenuates thelper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis

    Get PDF
    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-c, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60–70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFc. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration

    Chromatographic Examinations of Tea's Protection Against Lipid Oxidative Modifications

    Get PDF
    Ethanol metabolism is accompanied by generation of free radicals that damage cell components, especially lipids. The present study was designed to investigate the efficacy of the preventive effect of black tea on the lipid oxidative modifications in different tissues (plasma, liver, brain, kidney, stomach, lung, intestine, and spleen) of 12-month-old rats chronically intoxicated with ethanol. Ethanol intoxication caused changes in the level/activity of antioxidants that led to the significant increase in the level of lipid oxidative modification products. Oxidative modifications were estimated by measuring lipid hydroperoxides, malondialdehyde, and 4-hydroxynonenal by high-performance liquid chromatography (HPLC) and by spectrophotometric determination of conjugated dienes. These lipid-modification marker levels were increased in almost all examined tissues (3%–71%) after ethanol intoxication. Described changes were in accordance with the liver level of the most often used marker of arachidonic acid oxidation, isoprostane (8-isoPGF2α), determined by the LC/MS system. Administration of black tea to ethanol-intoxicated rats remarkably prevents the significant increase (by about 15%–42%) in concentrations of all measured parameters regarding all examined tissues, but especially the plasma, liver, brain, stomach, and spleen. The preventive effect of black tea in the other organs (kidney, lung, intestine) caused a decrease in examined markers in a smaller degree (by about 7%–28%). To determine in the liver the major constituents of black tea mainly responsible for antioxidative action such as catechins and theaflavins, which were absorbed in organism, the present study indicates their protective effect against ethanol-induced oxidative modifications of lipids

    Oxidative Modifications of Rat Liver Cell Components During Fasciola hepatica Infection

    Get PDF
    The aim of this paper was to assess the influence of Fasciola hepatica infection on oxidative modifications of rat liver cell components such as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F. hepatica. Activities and concentrations of liver damage markers were determined in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant capacity of the host liver, manifested by a decrease in total antioxidant status (TAS), was observed. Diminution of antioxidant abilities resulted in enhanced oxidative modifications of lipids and proteins. F. hepatica infection enhanced lipid peroxidation, which was visible in the statistically significant increase in the level of different lipid peroxidation products such as conjugated dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The level of protein modification markers in the rat liver was also significantly changed and the most intensified changes were observed at seventh week postinfection. Concentration of carbonyl groups and dityrosine was significantly increased, whereas the level of tryptophan and sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities of the liver and in the lipid and protein structure of the cell components resulted in destruction of the function of the liver. F. hepatica infection was accompanied by raising serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as markers of liver damage. A significant decrease in lysosomal as well as in the total activity of cathepsin B during fasciolosis was also observed

    Synthesis of the elements in stars: forty years of progress

    Full text link

    Los primeros «sepulcros de fosa». Prácticas funerarias durante el Neolítico en el curso inferior del Ebro

    No full text
    Peer reviewe

    Lipoic acid lessens Th1-mediated inflammation in lipopolysaccharide-induced uveitis reducing selectively Th1 lymphocytes-related cytokines release

    No full text
    Infl ammation results in the production of free radicals. We evaluated the anti-infl ammatory and antioxidant capacity of lipoic acid in an experimental uveitis model upon a subcutaneous injection of endotoxin into Lewis rats. The role of oxidative stress in the endotoxin-induced uveitis model is well-known. Besides, the Th1 response classically performs a central part in the immunopathological process of experimental autoimmune uveitis. Exogenous sources of lipoic acid have been shown to exhibit antioxidant and anti-infl ammatory properties. Our results show that lipoic acid treatment plays a preventive role in endotoxin-induced oxidative stress at 24 h post-administration and reduced Th1 lymphocytes-related cytokines by approximately 50 – 60%. Simultaneously, lipoic acid treatment caused a signifi cant reduction in uveal histopathological grading and in the protein concentration in aqueous humors, but not in cellular infi ltration
    corecore