7,456 research outputs found

    A ground system for early forest fire detection based on infrared signal processing

    Full text link
    This article presents a ground remote automatic system for forest surveillance based on infrared signal processing applied to early fire detection. Advanced techniques, which are based on infrared signal processing, are used in order to process the captured images. With the aim of determining the presence or absence of fire, the system performs the fusion of different detectors that exploit different expected characteristics of a real fire, such as persistence and increase. Theoretical simulations and practical results are presented to corroborate the control of the probability of false alarm. Results in a real environment are also presented to authenticate the accuracy of the operation of the proposed system. In particular, some experiments have been done to evaluate the delay of the system (tens of seconds on average) in detecting a controlled ground fire in a range of 1-10 km. Moreover, temporary evolution of false alarms and true detections are presented to evaluate the long-term performance of the system in a real environment. We have reached a detection probability of 100% at a false alarm rate of around 1 x 10(-9).This work has been supported by Generalitat Valenciana, under grant GVEMP06/001, and by MEC under the FPU programme.Bosch Roig, I.; GĂłmez, S.; Vergara DomĂ­nguez, L. (2011). A ground system for early forest fire detection based on infrared signal processing. International Journal of Remote Sensing. 32(17):4857-4870. https://doi.org/10.1080/01431161.2010.490245S485748703217Arrue, B. C., Ollero, A., & Matinez de Dios, J. R. (2000). An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems, 15(3), 64-73. doi:10.1109/5254.846287Bernabeu, P., Vergara, L., Bosh, I., & Igual, J. (2004). A prediction/detection scheme for automatic forest fire surveillance. Digital Signal Processing, 14(5), 481-507. doi:10.1016/j.dsp.2004.06.003Briz, S. (2003). Reduction of false alarm rate in automatic forest fire infrared surveillance systems. Remote Sensing of Environment, 86(1), 19-29. doi:10.1016/s0034-4257(03)00064-6Pastor, E. (2003). Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 29(2), 139-153. doi:10.1016/s0360-1285(03)00017-0Vergara, L., & Bernabeu, P. (2000). Automatic signal detection applied to fire control by infrared digital signal processing. Signal Processing, 80(4), 659-669. doi:10.1016/s0165-1684(99)00159-0Vergara, L., & Bernabeu, P. (2001). Simple approach to nonlinear prediction. Electronics Letters, 37(14), 926. doi:10.1049/el:20010616Vicente, J., & Guillemant, P. (2002). An image processing technique for automatically detecting forest fire. International Journal of Thermal Sciences, 41(12), 1113-1120. doi:10.1016/s1290-0729(02)01397-

    Cyclic mutually unbiased bases, Fibonacci polynomials and Wiedemann's conjecture

    Full text link
    We relate the construction of a complete set of cyclic mutually unbiased bases, i. e., mutually unbiased bases generated by a single unitary operator, in power-of-two dimensions to the problem of finding a symmetric matrix over F_2 with an irreducible characteristic polynomial that has a given Fibonacci index. For dimensions of the form 2^(2^k) we present a solution that shows an analogy to an open conjecture of Wiedemann in finite field theory. Finally, we discuss the equivalence of mutually unbiased bases.Comment: 11 pages, added chapter on equivalenc

    Motivic Serre invariants, ramification, and the analytic Milnor fiber

    Full text link
    We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.co

    Observational Evidence for an Age Dependence of Halo Bias

    Full text link
    We study the dependence of the cross-correlation between galaxies and galaxy groups on group properties. Confirming previous results, we find that the correlation strength is stronger for more massive groups, in good agreement with the expected mass dependence of halo bias. We also find, however, that for groups of the same mass, the correlation strength depends on the star formation rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups decreases as the SFR of the central galaxy increases. We discuss these findings in light of the recent findings by Gao et al (2005) that halo bias depends on halo formation time, in that halos that assemble earlier are more strongly biased. We also discuss the implication for galaxy formation, and address a possible link to galaxy conformity, the observed correlation between the properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures 3 and 4 replaced. The bias dependence on the central galaxy luminosity is omitted due to its sensitivity to the mass mode

    Nonlinear effects in the black hole ringdown: absorption-induced mode excitation

    Get PDF
    Gravitational-wave observations of black hole ringdowns are commonly used to characterize binary merger remnants and to test general relativity. These analyses assume linear black hole perturbation theory, in particular that the ringdown can be described in terms of quasinormal modes even for times approaching the merger. Here we investigate a nonlinear effect during the ringdown, namely how a mode excited at early times can excite additional modes as it is absorbed by the black hole. This is a third-order secular effect: the change in the black-hole mass causes a shift in the mode spectrum, so that the original mode is projected onto the new ones. Using nonlinear simulations, we study the ringdown of a spherically-symmetric scalar field around an asymptotically anti-de Sitter black hole, and we find that this "absorption-induced mode excitation" (AIME) is the dominant nonlinear effect. We show that this effect takes place well within the nonadiabatic regime, so we can analytically estimate it using a sudden mass-change approximation. Adapting our estimation technique to asymptotically-flat Schwarzschild black holes, we expect AIME to play a role in the analysis and interpretation of current and future gravitational wave observations

    Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence

    Full text link
    Red-sequence galaxies record the history of terminated star-formation in the Universe and can thus provide important clues to the mechanisms responsible for this termination. We construct composite samples of published cluster and field galaxy photometry in order to study the build-up of galaxies on the red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that the DGR in clusters is higher than that of the field at all redshifts, implying that the faint end of the red-sequence was established first in clusters. We find that the DGR evolves with redshift for both samples, consistent with the ``down-sizing'' picture of star formation. We examine the predictions of semi-analytic models for the DGR and find that neither the magnitude of its environmental dependence nor its evolution is correctly predicted in the models. Red-sequence DGRs are consistently too high in the models, the most likely explanation being that the strangulation mechanism used to remove hot gas from satellite galaxies is too efficient. Finally we present a simple toy model including a threshold mass, below which galaxies are not strangled, and show that this can predict the observed evolution of the field DGR.Comment: MNRAS letters accepted. 5 pages, 1 figur
    • …
    corecore