14 research outputs found

    Differential In Vitro Immortalization Capacity of Eleven, Probable High-Risk Human Papillomavirus Types

    Get PDF
    Epidemiological studies identified 12 high-risk HPV (hrHPV) types and 8 probable/possible hrHPV types that display different cancer risks. Functional studies on transforming properties of hrHPV are mainly limited to HPV16 and -18, which induce immortalization of human foreskin keratinocytes (HFKs) by successive bypass of two proliferative life span barriers, senescence and crisis. Here, we systematically compared the in vitro immortalization capacities, as well as influences on p53, pRb, hTERT, growth behavior, and differentiation capacity, of nine hrHPV types (HPV16, -18, -31, -33, -35, -45, -51, -52, and -59), and two probable hrHPV types (HPV66 and -70). By retroviral transduction, the respective E6/E7 coding sequences were expressed in HFKs from two or three independent donors. Reduced p53 levels and low-level hTERT expression in early-passage cells, as seen in HPV16-, -31-, -33-, and -35-, and to a lesser extent HPV18-transduced HFKs, was associated with continuous growth and an increased immortalization capacity. Less frequent immortalization by HPV45 and -51 and immortalization by HPV66 and -70 was preceded by an intervening period of strongly reduced growth (crisis) without prior increase in hTERT expression. Immortalization by HPV59 was also preceded by a period crisis, despite the onset of low hTERT expression at early passage. HPV52 triggered an extended life span but failed to induce immortality. Variations in p53 and pRb levels were not correlated with differences in alternative E6/E7 mRNA splicing in all hrHPV-transduced HFKs. On collagen rafts, transductants showed disturbed differentiation reminiscent of precancerous lesions. In conclusion, in vitro oncogenic capacities differ between the established hrHPV types, and both some established and probable hrHPV types display weak or moderate immortalization potential

    Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity

    Get PDF
    Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity

    Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity

    Get PDF
    Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity

    Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease

    No full text
    High-risk Human papilloma virus (HPV) types are the causative agents of cervical cancer and several other anogenital malignancies. The viral proteins expressed in the (pre)malignant cells are considered ideal targets for immunological intervention. Many approaches have been evaluated for this purpose, mostly aiming at the induction of HPV16 E7- and/or E6-specific cellular immunogenicity. As clinical success has so far been limited, novel approaches are required. We describe the development and pre-clinical testing of a vaccine candidate consisting of replication-deficient adenovirus type 26 and 35 based vectors for the interception of HPV16- and HPV18-related disease. We developed HPV16- and HPV18-specific antigens consisting of fusion proteins of E2, E6 and E7. The vaccine will be suitable for every disease stage, from incident and persistent infections where E2 is predominantly expressed up to late stages where E6 and E7 expression are upregulated. Importantly E6 and E7 are present as reordered fragments to abrogate the transforming activity of these two proteins. Loss of transforming activity was demonstrated in different in vitro models. Robust T-cell immunogenicity was induced upon immunization of mice with the vaccine candidate. Finally, the developed vaccine vectors showed considerable therapeutic efficacy in the TC-1 mouse model. The absence of transforming activity of the antigens and the favorable immunogenicity profile of the adenovirus based vectors along with the fact that these vectors can be readily produced on a large scale makes this approach attractive for clinical evaluation

    CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells

    No full text
    The important family of G protein-coupled receptors has so far not been targeted very successfully with conventional monoclonal antibodies. Here we report the isolation and characterization of functional VHH-based immunoglobulin single variable domains (or nanobodies) against the chemokine receptor CXCR4. Two highly selective monovalent nanobodies, 238D2 and 238D4, were obtained using a time-efficient whole cell immunization, phage display, and counterselection method. The highly selective VHH-based immunoglobulin single variable domains competitively inhibited the CXCR4-mediated signaling and antagonized the chemoattractant effect of the CXCR4 ligand CXCL12. Epitope mapping showed that the two nanobodies bind to distinct but partially overlapping sites in the extracellular loops. Short peptide linkage of 238D2 with 238D4 resulted in significantly increased affinity for CXCR4 and picomolar activity in antichemotactic assays. Interestingly, the monovalent nanobodies behaved as neutral antagonists, whereas the biparatopic nanobodies acted as inverse agonists at the constitutively active CXCR4-N3.35A. The CXCR4 nanobodies displayed strong antiretroviral activity against T cell-tropic and dual-tropic HIV-1 strains. Moreover, the biparatopic nanobody effectively mobilized CD34-positive stem cells in cynomolgus monkeys. Thus, the nanobody platform may be highly effective at generating extremely potent and selective G protein-coupled receptor modulators
    corecore